Matching Items (5)
Filtering by

Clear all filters

152589-Thumbnail Image.png
Description
The upstream transmission of bulk data files in Ethernet passive optical networks (EPONs) arises from a number of applications, such as data back-up and multimedia file upload. Existing upstream transmission approaches lead to severe delays for conventional packet traffic when best-effort file and packet traffic are mixed. I propose and

The upstream transmission of bulk data files in Ethernet passive optical networks (EPONs) arises from a number of applications, such as data back-up and multimedia file upload. Existing upstream transmission approaches lead to severe delays for conventional packet traffic when best-effort file and packet traffic are mixed. I propose and evaluate an exclusive interval for bulk transfer (EIBT) transmission strategy that reserves an EIBT for file traffic in an EPON polling cycle. I optimize the duration of the EIBT to minimize a weighted sum of packet and file delays. Through mathematical delay analysis and verifying simulation, it is demonstrated that the EIBT approach preserves small delays for packet traffic while efficiently serving bulk data file transfers. Dynamic circuits are well suited for applications that require predictable service with a constant bit rate for a prescribed period of time, such as demanding e-science applications. Past research on upstream transmission in passive optical networks (PONs) has mainly considered packet-switched traffic and has focused on optimizing packet-level performance metrics, such as reducing mean delay. This study proposes and evaluates a dynamic circuit and packet PON (DyCaPPON) that provides dynamic circuits along with packet-switched service. DyCaPPON provides (i) flexible packet-switched service through dynamic bandwidth allocation in periodic polling cycles, and (ii) consistent circuit service by allocating each active circuit a fixed-duration upstream transmission window during each fixed-duration polling cycle. I analyze circuit-level performance metrics, including the blocking probability of dynamic circuit requests in DyCaPPON through a stochastic knapsack-based analysis. Through this analysis I also determine the bandwidth occupied by admitted circuits. The remaining bandwidth is available for packet traffic and I analyze the resulting mean delay of packet traffic. Through extensive numerical evaluations and verifying simulations, the circuit blocking and packet delay trade-offs in DyCaPPON is demonstrated. An extended version of the DyCaPPON designed for light traffic situation is introduced in this article as well.
ContributorsWei, Xing (Author) / Reisslein, Martin (Thesis advisor) / Fowler, John (Committee member) / Palais, Joseph (Committee member) / McGarry, Michael (Committee member) / Arizona State University (Publisher)
Created2014
153081-Thumbnail Image.png
Description
LTE (Long Term Evolution) represents an emerging technology that will change how service providers backhaul user traffic to their infrastructure over IP networks. To support growing mobile bandwidth demand, an EPON backhaul infrastructure will make possible realtime high bandwidth applications. LTE backhaul planning and deployment scenarios are important

LTE (Long Term Evolution) represents an emerging technology that will change how service providers backhaul user traffic to their infrastructure over IP networks. To support growing mobile bandwidth demand, an EPON backhaul infrastructure will make possible realtime high bandwidth applications. LTE backhaul planning and deployment scenarios are important factors to network success. In this thesis, we are going to study the effect of LTE backhaul on Optical network, in an attempt to interoperate Fiber and Wireless networks. This project is based on traffic forecast for the LTE networks. Traffic models are studied and gathered from literature to reflect applications accurately. Careful capacity planning of the mobile backhaul is going to bring a better experience for LTE users, in terms of bit rates and latency they can expect, while allowing the network operators to spend their funds effectively.
ContributorsAlharbi, Ziyad (Author) / Reisslein, Martin (Thesis advisor) / Zhang, Yanchao (Committee member) / McGarry, Michael (Committee member) / Arizona State University (Publisher)
Created2014
149848-Thumbnail Image.png
Description
With tremendous increase in the popularity of networked multimedia applications, video data is expected to account for a large portion of the traffic on the Internet and more importantly next-generation wireless systems. To be able to satisfy a broad range of customers requirements, two major problems need to be solved.

With tremendous increase in the popularity of networked multimedia applications, video data is expected to account for a large portion of the traffic on the Internet and more importantly next-generation wireless systems. To be able to satisfy a broad range of customers requirements, two major problems need to be solved. The first problem is the need for a scalable representation of the input video. The recently developed scalable extension of the state-of-the art H.264/MPEG-4 AVC video coding standard, also known as H.264/SVC (Scalable Video Coding) provides a solution to this problem. The second problem is that wireless transmission medium typically introduce errors in the bit stream due to noise, congestion and fading on the channel. Protection against these channel impairments can be realized by the use of forward error correcting (FEC) codes. In this research study, the performance of scalable video coding in the presence of bit errors is studied. The encoded video is channel coded using Reed Solomon codes to provide acceptable performance in the presence of channel impairments. In the scalable bit stream, some parts of the bit stream are more important than other parts. Parity bytes are assigned to the video packets based on their importance in unequal error protection scheme. In equal error protection scheme, parity bytes are assigned based on the length of the message. A quantitative comparison of the two schemes, along with the case where no channel coding is employed is performed. H.264 SVC single layer video streams for long video sequences of different genres is considered in this study which serves as a means of effective video characterization. JSVM reference software, in its current version, does not support decoding of erroneous bit streams. A framework to obtain H.264 SVC compatible bit stream is modeled in this study. It is concluded that assigning of parity bytes based on the distribution of data for different types of frames provides optimum performance. Application of error protection to the bit stream enhances the quality of the decoded video with minimal overhead added to the bit stream.
ContributorsSundararaman, Hari (Author) / Reisslein, Martin (Thesis advisor) / Seeling, Patrick (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2011
150639-Thumbnail Image.png
Description
A new type of Ethernet switch based on the PCI Express switching fabric is being presented. The switch leverages PCI Express peer-to-peer communication protocol to implement high performance Ethernet packet switching. The advantages and challenges of using the PCI Express as the switching fabric are addressed. The PCI Express is

A new type of Ethernet switch based on the PCI Express switching fabric is being presented. The switch leverages PCI Express peer-to-peer communication protocol to implement high performance Ethernet packet switching. The advantages and challenges of using the PCI Express as the switching fabric are addressed. The PCI Express is a high-speed short-distance communication protocol largely used in motherboard-level interconnects. The total bandwidth of a PCI Express 3.0 link can reach as high as 256 gigabit per second (Gb/s) per 16 lanes. Concerns for PCI Express such as buffer speed, address mapping, Quality of Service and power consumption need to be considered. An overview of the proposed Ethernet switch architecture is presented. The switch consists of a PCI Express switching fabric and multiple adaptor cards. The thesis reviews the peer-to-peer (P2P) communication protocol used in the switching fabric. The thesis also discusses the packet routing procedure in P2P protocol in detail. The Ethernet switch utilizes a portion of the Quality of Service provided with PCI Express to ensure guaranteed transmission. The thesis presents a method of adapting Ethernet packets over the PCI Express transaction layer packets. The adaptor card is divided into the following two parts: receive path and transmit path. The commercial off-the-shelf Media Access Control (MAC) core and PCI Express endpoint core are used in the adaptor. The output address lookup logic block is responsible for converting Ethernet MAC addresses to PCI Express port addresses. Different methods of providing Quality of Service in the adaptor card include classification, flow control, and error detection with the cooperation of the PCI Express switch are discussed. The adaptor logic is implemented in Verilog hardware description language. Functional simulation is conducted in ModelSim. The simulation results show that the Ethernet packets are able to be converted to the corresponding PCI Express transaction layer packets based on their destination MAC addresses. The transaction layer packets are then converted back to Ethernet packets. A functionally correct FPGA logic of the adaptor card is ready for implementation on real FPGA development board.
ContributorsChen, Caiyi (Author) / Hui, Joseph (Thesis advisor) / Reisslein, Martin (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2012
149439-Thumbnail Image.png
Description
Ethernet switching is provided to interconnect multiple Ethernets for the exchange of Ethernet data frames. Most Ethernet switches require data buffering and Ethernet signal regeneration at the switch which incur the problems of substantial signal processing, power consumption, and transmission delay. To solve these problems, a cross bar architecture switching

Ethernet switching is provided to interconnect multiple Ethernets for the exchange of Ethernet data frames. Most Ethernet switches require data buffering and Ethernet signal regeneration at the switch which incur the problems of substantial signal processing, power consumption, and transmission delay. To solve these problems, a cross bar architecture switching system for 10GBASE-T Ethernet is proposed in this thesis. The switching system is considered as the first step of implementing a multi-stage interconnection network to achieve Terabit or Petabit switching. By routing customized headers in capsulated Ethernet frames in an out-of-band control method, the proposed switching system would transmit the original Ethernet frames with little processing, thereby makes the system appear as a simple physical medium for different hosts. The switching system is designed and performed by using CMOS technology.
ContributorsLuo, Haojun (Author) / Hui, Joseph (Thesis advisor) / Zhang, Junshan (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2010