Matching Items (2)
Filtering by

Clear all filters

150145-Thumbnail Image.png
Description
Combretastatin A-4 (CA-4) represents one of the most promising antineoplastic and cancer vascular targeting stilbenes that have been isolated from the South African bush willow, Combretum Caffrum Kuntze. In order to further explore the bioactivity of this molecule, a diiodo derivative of CA-4, as well as its phosphate prodrug,

Combretastatin A-4 (CA-4) represents one of the most promising antineoplastic and cancer vascular targeting stilbenes that have been isolated from the South African bush willow, Combretum Caffrum Kuntze. In order to further explore the bioactivity of this molecule, a diiodo derivative of CA-4, as well as its phosphate prodrug, was synthesized and analyzed for its biological activity; although only a scale up synthesis of this compound was performed herein for ongoing analysis. In general, no increased specificity was noted for the human cancer cell lines. Antiangiogenic properties were similar to the untreated control. The diiodocombstatin was active against M. luteus, and its phosphate prodrugs were very active against N. gonorrhoeae. Combretastain A-2 is another biologically active stilbene isolated from Combretum Caffrum Kuntze. In an attempt to increase biological activity of this molecule both mono-iodo and diiodo derivatives have been partially synthesized. The initial step involving the iodination of piperonal utilizes a novel, cost effective and mild reaction. The iodo stilbenes were obtained via a Wittig reaction using phosphonium salts 25 and 27 along with 2,3-Bis-[tert-butyldimethylsiloxy]-4-methoxy benzaldehyde 29. Deprotection of the subsequent z-stilbenes, non-isolated mono-iodo stilbene and the diiodo 30 produced two synthetic objective z-stilbenes 16 and 17. Synthesis as well as biological analysis is ongoing.
ContributorsTrickey-Platt, Brindi Brooks (Author) / Pettit, George R. (Thesis advisor) / Moore, Ana (Committee member) / Skibo, Edward (Committee member) / Arizona State University (Publisher)
Created2011
149699-Thumbnail Image.png
Description
A potential new class of cancer chemotherapeutic agents has been synthesized by varying the 2 position of a benzimidazole based extended amidine. Compounds 6-amino-2-chloromethyl-4-imino-1-(2-methansulfonoxyethyl)-5-methyl-1H-benzimidazole-7-one (1A) and 6-amino-2-hydroxypropyl-4-imino-1-(2-methansulfonoxyethyl)-5-methyl-1H-benzimidazole-7-one (1B) were assayed at the National Cancer Institute's (NCI) Developmental Therapeutic Program (DTP) and found to be cytotoxic at sub-micromolar concentrations, and have

A potential new class of cancer chemotherapeutic agents has been synthesized by varying the 2 position of a benzimidazole based extended amidine. Compounds 6-amino-2-chloromethyl-4-imino-1-(2-methansulfonoxyethyl)-5-methyl-1H-benzimidazole-7-one (1A) and 6-amino-2-hydroxypropyl-4-imino-1-(2-methansulfonoxyethyl)-5-methyl-1H-benzimidazole-7-one (1B) were assayed at the National Cancer Institute's (NCI) Developmental Therapeutic Program (DTP) and found to be cytotoxic at sub-micromolar concentrations, and have shown between a 100 and a 1000-fold increase in specificity towards lung, colon, CNS, and melanoma cell lines. These ATP mimics have been found to correlate with sequestosome 1 (SQSTM1), a protein implicated in drug resistance and cell survival in various cancer cell lines. Using the DTP COMPARE algorithm, compounds 1A and 1B were shown to correlate to each other at 77%, but failed to correlate with other benzimidazole based extended amidines previously synthesized in this laboratory suggesting they operate through a different biological mechanism.
ContributorsDarzi, Evan (Author) / Skibo, Edward (Thesis advisor) / Gould, Ian (Committee member) / Francisco, Wilson (Committee member) / Arizona State University (Publisher)
Created2011