Matching Items (20)
Filtering by

Clear all filters

152025-Thumbnail Image.png
Description
At present, almost 70% of the electric energy in the United States is produced utilizing fossil fuels. Combustion of fossil fuels contributes CO2 to the atmosphere, potentially exacerbating the impact on global warming. To make the electric power system (EPS) more sustainable for the future, there has been an emphasis

At present, almost 70% of the electric energy in the United States is produced utilizing fossil fuels. Combustion of fossil fuels contributes CO2 to the atmosphere, potentially exacerbating the impact on global warming. To make the electric power system (EPS) more sustainable for the future, there has been an emphasis on scaling up generation of electric energy from wind and solar resources. These resources are renewable in nature and have pollution free operation. Various states in the US have set up different goals for achieving certain amount of electrical energy to be produced from renewable resources. The Southwestern region of the United States receives significant solar radiation throughout the year. High solar radiation makes concentrated solar power and solar PV the most suitable means of renewable energy production in this region. However, the majority of the projects that are presently being developed are either residential or utility owned solar PV plants. This research explores the impact of significant PV penetration on the steady state voltage profile of the electric power transmission system. This study also identifies the impact of PV penetration on the dynamic response of the transmission system such as rotor angle stability, frequency response and voltage response after a contingency. The light load case of spring 2010 and the peak load case of summer 2018 have been considered for analyzing the impact of PV. If the impact is found to be detrimental to the normal operation of the EPS, mitigation measures have been devised and presented in the thesis. Commercially available software tools/packages such as PSLF, PSS/E, DSA Tools have been used to analyze the power network and validate the results.
ContributorsPrakash, Nitin (Author) / Heydt, Gerald T. (Thesis advisor) / Vittal, Vijay (Thesis advisor) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2013
152202-Thumbnail Image.png
Description
This thesis addresses the issue of making an economic case for energy storage in power systems. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load; store energy when it is inexpensive and discharge energy when it is expensive; potentially defer transmission

This thesis addresses the issue of making an economic case for energy storage in power systems. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load; store energy when it is inexpensive and discharge energy when it is expensive; potentially defer transmission and generation expansion; and provide for generation reserve margins. As renewable energy resource penetration increases, the uncertainty and variability of wind and solar may be alleviated by bulk energy storage technologies. The quadratic programming function in MATLAB is used to simulate an economic dispatch that includes energy storage. A program is created that utilizes quadratic programming to analyze various cases using a 2010 summer peak load from the Arizona transmission system, part of the Western Electricity Coordinating Council (WECC). The MATLAB program is used first to test the Arizona test bed with a low level of energy storage to study how the storage power limit effects several optimization out-puts such as the system wide operating costs. Very high levels of energy storage are then added to see how high level energy storage affects peak shaving, load factor, and other system applications. Finally, various constraint relaxations are made to analyze why the applications tested eventually approach a constant value. This research illustrates the use of energy storage which helps minimize the system wide generator operating cost by "shaving" energy off of the peak demand.
ContributorsRuggiero, John (Author) / Heydt, Gerald T (Thesis advisor) / Datta, Rajib (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2013
152153-Thumbnail Image.png
Description
Transmission expansion planning (TEP) is a complex decision making process that requires comprehensive analysis to determine the time, location, and number of electric power transmission facilities that are needed in the future power grid. This dissertation investigates the topic of solving TEP problems for large power systems. The dissertation can

Transmission expansion planning (TEP) is a complex decision making process that requires comprehensive analysis to determine the time, location, and number of electric power transmission facilities that are needed in the future power grid. This dissertation investigates the topic of solving TEP problems for large power systems. The dissertation can be divided into two parts. The first part of this dissertation focuses on developing a more accurate network model for TEP study. First, a mixed-integer linear programming (MILP) based TEP model is proposed for solving multi-stage TEP problems. Compared with previous work, the proposed approach reduces the number of variables and constraints needed and improves the computational efficiency significantly. Second, the AC power flow model is applied to TEP models. Relaxations and reformulations are proposed to make the AC model based TEP problem solvable. Third, a convexified AC network model is proposed for TEP studies with reactive power and off-nominal bus voltage magnitudes included in the model. A MILP-based loss model and its relaxations are also investigated. The second part of this dissertation investigates the uncertainty modeling issues in the TEP problem. A two-stage stochastic TEP model is proposed and decomposition algorithms based on the L-shaped method and progressive hedging (PH) are developed to solve the stochastic model. Results indicate that the stochastic TEP model can give a more accurate estimation of the annual operating cost as compared to the deterministic TEP model which focuses only on the peak load.
ContributorsZhang, Hui (Author) / Vittal, Vijay (Thesis advisor) / Heydt, Gerald T (Thesis advisor) / Mittelmann, Hans D (Committee member) / Hedman, Kory W (Committee member) / Arizona State University (Publisher)
Created2013
152155-Thumbnail Image.png
Description
The smart grid initiative is the impetus behind changes that are expected to culminate into an enhanced distribution system with the communication and control infrastructure to support advanced distribution system applications and resources such as distributed generation, energy storage systems, and price responsive loads. This research proposes a distribution-class analog

The smart grid initiative is the impetus behind changes that are expected to culminate into an enhanced distribution system with the communication and control infrastructure to support advanced distribution system applications and resources such as distributed generation, energy storage systems, and price responsive loads. This research proposes a distribution-class analog of the transmission LMP (DLMP) as an enabler of the advanced applications of the enhanced distribution system. The DLMP is envisioned as a control signal that can incentivize distribution system resources to behave optimally in a manner that benefits economic efficiency and system reliability and that can optimally couple the transmission and the distribution systems. The DLMP is calculated from a two-stage optimization problem; a transmission system OPF and a distribution system OPF. An iterative framework that ensures accurate representation of the distribution system's price sensitive resources for the transmission system problem and vice versa is developed and its convergence problem is discussed. As part of the DLMP calculation framework, a DCOPF formulation that endogenously captures the effect of real power losses is discussed. The formulation uses piecewise linear functions to approximate losses. This thesis explores, with theoretical proofs, the breakdown of the loss approximation technique when non-positive DLMPs/LMPs occur and discusses a mixed integer linear programming formulation that corrects the breakdown. The DLMP is numerically illustrated in traditional and enhanced distribution systems and its superiority to contemporary pricing mechanisms is demonstrated using price responsive loads. Results show that the impact of the inaccuracy of contemporary pricing schemes becomes significant as flexible resources increase. At high elasticity, aggregate load consumption deviated from the optimal consumption by up to about 45 percent when using a flat or time-of-use rate. Individual load consumption deviated by up to 25 percent when using a real-time price. The superiority of the DLMP is more pronounced when important distribution network conditions are not reflected by contemporary prices. The individual load consumption incentivized by the real-time price deviated by up to 90 percent from the optimal consumption in a congested distribution network. While the DLMP internalizes congestion management, the consumption incentivized by the real-time price caused overloads.
ContributorsAkinbode, Oluwaseyi Wemimo (Author) / Hedman, Kory W (Thesis advisor) / Heydt, Gerald T (Committee member) / Zhang, Muhong (Committee member) / Arizona State University (Publisher)
Created2013
151561-Thumbnail Image.png
Description
This dissertation presents a new hybrid fault current limiter (FCL) topology that is primarily intended to protect single-phase power equipment. It can however be extended to protect three phase systems but would need three devices to protect each individual phase. In comparison against the existing fault current limiter technology, the

This dissertation presents a new hybrid fault current limiter (FCL) topology that is primarily intended to protect single-phase power equipment. It can however be extended to protect three phase systems but would need three devices to protect each individual phase. In comparison against the existing fault current limiter technology, the salient fea-tures of the proposed topology are: a) provides variable impedance that provides a 50% reduction in prospective fault current; b) near instantaneous response time which is with-in the first half cycle (1-4 ms); c) the use of semiconductor switches as the commutating switch which produces reduced leakage current, reduced losses, improved reliability, and a faster switch time (ns-µs); d) zero losses in steady-state operation; e) use of a Neodym-ium (NdFeB) permanent magnet as the limiting impedance which reduces size, cost, weight, eliminates DC biasing and cooling costs; f) use of Pulse Width Modulation (PWM) to control the magnitude of the fault current to a user's desired level. g) experi-mental test system is developed and tested to prove the concepts of the proposed FCL. This dissertation presents the proposed topology and its working principle backed up with numerical verifications, simulation results, and hardware implementation results. Conclu-sions and future work are also presented.
ContributorsPrigmore, Jay (Author) / Karady, George G. (Thesis advisor) / Ayyanar, Raja (Committee member) / Holbert, Keith E. (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2013
152934-Thumbnail Image.png
Description
This thesis focuses on developing an integrated transmission and distribution framework that couples the two sub-systems together with due consideration to conventional demand flexibility. The proposed framework ensures accurate representation of the system resources and the network conditions when modeling the distribution system in the transmission OPF and vice-versa. It

This thesis focuses on developing an integrated transmission and distribution framework that couples the two sub-systems together with due consideration to conventional demand flexibility. The proposed framework ensures accurate representation of the system resources and the network conditions when modeling the distribution system in the transmission OPF and vice-versa. It is further used to develop an accurate pricing mechanism (Distribution-based Location Marginal Pricing), which is reflective of the moment-to-moment costs of generating and delivering electrical energy, for the distribution system. By accurately modeling the two sub-systems, we can improve the economic efficiency and the system reliability, as the price sensitive resources can be controlled to behave in a way that benefits the power system as a whole.
ContributorsSinghal, Nikita G (Author) / Hedman, Kory W (Thesis advisor) / Tylavsky, Daniel J (Committee member) / Sankar, Lalitha (Committee member) / Arizona State University (Publisher)
Created2014
153434-Thumbnail Image.png
Description
A new loop configuration capable of reducing power radiation magnitudes lower than conventional loops has been developed. This configuration is demonstrated for the case of two coaxial loops of 0.1 meter radius coupled via the magnetic reactive field. Utilizing electromagnetism theory, techniques from antenna design and a new near field

A new loop configuration capable of reducing power radiation magnitudes lower than conventional loops has been developed. This configuration is demonstrated for the case of two coaxial loops of 0.1 meter radius coupled via the magnetic reactive field. Utilizing electromagnetism theory, techniques from antenna design and a new near field design initiative, the ability to design a magnetic field has been investigated by using a full wave simulation tool. The method for realization is initiated from first order physics model, ADS and onto a full wave situation tool for the case of a non-radiating helical loop. The exploration into the design of a magnetic near field while mitigating radiation power is demonstrated using an real number of twists to form a helical wire loop while biasing the integer twisted loop in a non-conventional moebius termination. The helix loop setup as a moebius loop convention can also be expressed as a shorted antenna scheme. The 0.1 meter radius helix antenna is biased with a 1MHz frequency that categorized the antenna loop as electrically small. It is then demonstrated that helical configuration reduces the electric field and mitigates power radiation into the far field. In order to compare the radiated power reduction performance of the helical loop a shielded loop is used as a baseline for comparison. The shielded loop system of the same geometric size and frequency is shown to have power radiation expressed as -46.1 dBm. The power radiated mitigation method of the helix loop reduces the power radiated from the two loop system down to -98.72 dBm.
ContributorsMoreno, Fernando (Author) / Diaz, Rodolfo (Thesis advisor) / Aberle, James T., 1961- (Committee member) / Kozicki, Michael (Committee member) / Arizona State University (Publisher)
Created2015
153348-Thumbnail Image.png
Description
This research develops heuristics for scheduling electric power production amid uncertainty. Reliability is becoming more difficult to manage due to growing uncertainty from renewable resources. This challenge is compounded by the risk of resource outages, which can occur any time and without warning. Stochastic optimization is a promising tool but

This research develops heuristics for scheduling electric power production amid uncertainty. Reliability is becoming more difficult to manage due to growing uncertainty from renewable resources. This challenge is compounded by the risk of resource outages, which can occur any time and without warning. Stochastic optimization is a promising tool but remains computationally intractable for large systems. The models used in industry instead schedule for the forecast and withhold generation reserve for scenario response, but they are blind to how this reserve may be constrained by network congestion. This dissertation investigates more effective heuristics to improve economics and reliability in power systems where congestion is a concern.

Two general approaches are developed. Both approximate the effects of recourse decisions without actually solving a stochastic model. The first approach procures more reserve whenever approximate recourse policies stress the transmission network. The second approach procures reserve at prime locations by generalizing the existing practice of reserve disqualification. The latter approach is applied for feasibility and is later extended to limit scenario costs. Testing demonstrates expected cost improvements around 0.5%-1.0% for the IEEE 73-bus test case, which can translate to millions of dollars per year even for modest systems. The heuristics developed in this dissertation perform somewhere between established deterministic and stochastic models: providing an economic benefit over current practices without substantially increasing computational times.
ContributorsLyon, Joshua Daniel (Author) / Zhang, Muhong (Thesis advisor) / Hedman, Kory W (Thesis advisor) / Askin, Ronald G. (Committee member) / Mirchandani, Pitu (Committee member) / Arizona State University (Publisher)
Created2015
149934-Thumbnail Image.png
Description
This research work describes the design of a fault current limiter (FCL) using digital logic and a microcontroller based data acquisition system for an ultra fast pilot protection system. These systems have been designed according to the requirements of the Future Renewable Electric Energy Delivery and Management (FREEDM) system (or

This research work describes the design of a fault current limiter (FCL) using digital logic and a microcontroller based data acquisition system for an ultra fast pilot protection system. These systems have been designed according to the requirements of the Future Renewable Electric Energy Delivery and Management (FREEDM) system (or loop), a 1 MW green energy hub. The FREEDM loop merges advanced power electronics technology with information tech-nology to form an efficient power grid that can be integrated with the existing power system. With the addition of loads to the FREEDM system, the level of fault current rises because of increased energy flow to supply the loads, and this requires the design of a limiter which can limit this current to a level which the existing switchgear can interrupt. The FCL limits the fault current to around three times the rated current. Fast switching Insulated-gate bipolar transistor (IGBT) with its gate control logic implements a switching strategy which enables this operation. A complete simulation of the system was built on Simulink and it was verified that the FCL limits the fault current to 1000 A compared to more than 3000 A fault current in the non-existence of a FCL. This setting is made user-defined. In FREEDM system, there is a need to interrupt a fault faster or make intelligent deci-sions relating to fault events, to ensure maximum availability of power to the loads connected to the system. This necessitates fast acquisition of data which is performed by the designed data acquisition system. The microcontroller acquires the data from a current transformer (CT). Mea-surements are made at different points in the FREEDM system and merged together, to input it to the intelligent protection algorithm that has been developed by another student on the project. The algorithm will generate a tripping signal in the event of a fault. The developed hardware and the programmed software to accomplish data acquisition and transmission are presented here. The designed FCL ensures that the existing switchgear equipments need not be replaced thus aiding future power system expansion. The developed data acquisition system enables fast fault sensing in protection schemes improving its reliability.
ContributorsThirumalai, Arvind (Author) / Karady, George G. (Thesis advisor) / Vittal, Vijay (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2011
151247-Thumbnail Image.png
Description
In the United States, especially in metropolitan areas, transmission infra-structure is congested due to a combination of increasing load demands, declining investment, and aging facilities. It is anticipated that significant investments will be required for new construction and upgrades in order to serve load demands. This thesis explores higher phase

In the United States, especially in metropolitan areas, transmission infra-structure is congested due to a combination of increasing load demands, declining investment, and aging facilities. It is anticipated that significant investments will be required for new construction and upgrades in order to serve load demands. This thesis explores higher phase order systems, specifically, six-phase, as a means of increasing power transfer capability, and provides a comparison with conventional three-phase double circuit transmission lines. In this thesis, the line parameters, electric and magnetic fields, and right of way are the criteria for comparing six-phase and three-phase double circuit lines. The calculations of the criteria were achieved by a program developed using MATLAB. This thesis also presents fault analysis and recommends suitable pro-tection for six-phase transmission lines. This calculation was performed on 4-bus, 9-bus, and 118-bus systems from Powerworld® sample cases. The simulations were performed using Powerworld® and PSCAD®. Line parameters calculations performed in this thesis show that line imped-ances in six-phase lines have a slight difference, compared to three-phase double circuit line. The shunt capacitance of compacted six phase line is twice of the value in the three-phase double circuit line. As a consequence, the compacted six-phase line provides higher surge impedance loadings. The electric and magnetic fields calculations show that, ground level electric fields of the six-phase lines decline more rapidly as the distance from center of the lines increase. The six-phase lines have a better performance on ground level magnetic field. Based on the electric and magnetic field results, right of way re-quirements for the six-phase lines and three-phase double circuit line were calcu-lated. The calculation results of right of way show that six-phase lines provide higher power transfer capability with a given right of way. Results from transmission line fault analysis, and protection study show that, fault types and protection system in six-phase lines are more complicated, com-pared to three-phase double circuit line. To clarify the concern about six-phase line protection, a six-phase line protection system was designed. Appropriate pro-tection settings were determined for a six-phase line in the 4-bus system.
ContributorsDeng, Xianda (Author) / Gorur, Ravi (Thesis advisor) / Heydt, Gerald (Committee member) / Vittal, Vijay (Committee member) / Arizona State University (Publisher)
Created2012