Matching Items (4)
Filtering by

Clear all filters

152149-Thumbnail Image.png
Description
Traditional approaches to modeling microgrids include the behavior of each inverter operating in a particular network configuration and at a particular operating point. Such models quickly become computationally intensive for large systems. Similarly, traditional approaches to control do not use advanced methodologies and suffer from poor performance and limited operating

Traditional approaches to modeling microgrids include the behavior of each inverter operating in a particular network configuration and at a particular operating point. Such models quickly become computationally intensive for large systems. Similarly, traditional approaches to control do not use advanced methodologies and suffer from poor performance and limited operating range. In this document a linear model is derived for an inverter connected to the Thevenin equivalent of a microgrid. This model is then compared to a nonlinear simulation model and analyzed using the open and closed loop systems in both the time and frequency domains. The modeling error is quantified with emphasis on its use for controller design purposes. Control design examples are given using a Glover McFarlane controller, gain sched- uled Glover McFarlane controller, and bumpless transfer controller which are compared to the standard droop control approach. These examples serve as a guide to illustrate the use of multi-variable modeling techniques in the context of robust controller design and show that gain scheduled MIMO control techniques can extend the operating range of a microgrid. A hardware implementation is used to compare constant gain droop controllers with Glover McFarlane controllers and shows a clear advantage of the Glover McFarlane approach.
ContributorsSteenis, Joel (Author) / Ayyanar, Raja (Thesis advisor) / Mittelmann, Hans (Committee member) / Tsakalis, Konstantinos (Committee member) / Tylavsky, Daniel (Committee member) / Arizona State University (Publisher)
Created2013
152908-Thumbnail Image.png
Description
A new photovoltaic (PV) array power converter circuit is presented. The salient features of this inverter are: transformerless topology, grounded PV array, and only film capacitors. The motivations are to reduce cost, eliminate leakage ground currents, and improve reliability. The use of Silicon Carbide (SiC) transistors is the key enabling

A new photovoltaic (PV) array power converter circuit is presented. The salient features of this inverter are: transformerless topology, grounded PV array, and only film capacitors. The motivations are to reduce cost, eliminate leakage ground currents, and improve reliability. The use of Silicon Carbide (SiC) transistors is the key enabling technology for this particular circuit to attain good efficiency.

Traditionally, grid connected PV inverters required a transformer for isolation and safety. The disadvantage of high frequency transformer based inverters is complexity and cost. Transformerless inverters have become more popular recently, although they can be challenging to implement because of possible high frequency currents through the PV array's stay capacitance to earth ground. Conventional PV inverters also typically utilize electrolytic capacitors for bulk power buffering. However such capacitors can be prone to decreased reliability.

The solution proposed here to solve these problems is a bi directional buck boost converter combined with half bridge inverters. This configuration enables grounding of the array's negative terminal and passive power decoupling with only film capacitors.

Several aspects of the proposed converter are discussed. First a literature review is presented on the issues to be addressed. The proposed circuit is then presented and examined in detail. This includes theory of operation, component selection, and control systems. An efficiency analysis is also conducted. Simulation results are then presented that show correct functionality. A hardware prototype is built and experiment results also prove the concept. Finally some further developments are mentioned.

As a summary of the research a new topology and control technique were developed. The resultant circuit is a high performance transformerless PV inverter with upwards of 97% efficiency.
ContributorsBreazeale, Lloyd C (Author) / Ayyanar, Raja (Thesis advisor) / Karady, George G. (Committee member) / Tylavsky, Daniel (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2014
152886-Thumbnail Image.png
Description
As the number of devices with wireless capabilities and the proximity of these devices to each other increases, better ways to handle the interference they cause need to be explored. Also important is for these devices to keep up with the demand for data rates while not compromising on

As the number of devices with wireless capabilities and the proximity of these devices to each other increases, better ways to handle the interference they cause need to be explored. Also important is for these devices to keep up with the demand for data rates while not compromising on industry established expectations of power consumption and mobility. Current methods of distributing the spectrum among all participants are expected to not cope with the demand in a very near future. In this thesis, the effect of employing sophisticated multiple-input, multiple-output (MIMO) systems in this regard is explored. The efficacy of systems which can make intelligent decisions on the transmission mode usage and power allocation to these modes becomes relevant in the current scenario, where the need for performance far exceeds the cost expendable on hardware. The effect of adding multiple antennas at either ends will be examined, the capacity of such systems and of networks comprised of many such participants will be evaluated. Methods of simulating said networks, and ways to achieve better performance by making intelligent transmission decisions will be proposed. Finally, a way of access control closer to the physical layer (a 'statistical MAC') and a possible metric to be used for such a MAC is suggested.
ContributorsThontadarya, Niranjan (Author) / Bliss, Daniel W (Thesis advisor) / Berisha, Visar (Committee member) / Ying, Lei (Committee member) / Arizona State University (Publisher)
Created2014
151127-Thumbnail Image.png
Description
Renewable energy has been a very hot topic in recent years due to the traditional energy crisis. Incentives that encourage the renewables have been established all over the world. Ordinary homeowners are also seeking ways to exploit renewable energy. In this thesis, residential PV system, wind turbine system and a

Renewable energy has been a very hot topic in recent years due to the traditional energy crisis. Incentives that encourage the renewables have been established all over the world. Ordinary homeowners are also seeking ways to exploit renewable energy. In this thesis, residential PV system, wind turbine system and a hybrid wind/solar system are all investigated. The solar energy received by the PV panels varies with many factors. The most essential one is the irradiance. As the PV panel been installed towards different orientations, the incident insolation received by the panel also will be different. The differing insolation corresponds to the different angles between the irradiance and the panel throughout the day. The result shows that for PV panels in the northern hemisphere, the ones facing south obtain the highest level insolation and thus generate the most electricity. However, with the two different electricity rate plans, flat rate plan and TOU (time of use) plan, the value of electricity that PV generates is different. For wind energy, the wind speed is the most significant variable to determine the generation of a wind turbine. Unlike solar energy, wind energy is much more regionally dependent. Wind resources vary between very close locations. As expected, the result shows that, larger wind speed leads to more electricity generation and thus shorter payback period. For the PV/wind hybrid system, two real cases are analyzed for Altamont and Midhill, CA. In this part, the impact of incentives, system cost and system size are considered. With a hybrid system, homeowners may choose different size combinations between PV and wind turbines. It turns out that for these two locations, the system with larger PV output always achieve a shorter payback period due to the lower cost. Even though, for a longer term, the system with a larger wind turbine in locations with excellent wind resources may lead to higher return on investment. Meanwhile, impacts of both wind and solar incentives (mainly utility rebates) are analyzed. At last, effects of the cost of both renewables are performed.
ContributorsAn, Wen (Author) / Holbert, Keith E. (Thesis advisor) / Karady, George G. (Committee member) / Tylavsky, Daniel (Committee member) / Arizona State University (Publisher)
Created2012