Matching Items (6)
Filtering by

Clear all filters

150270-Thumbnail Image.png
Description
Thermal interface materials (TIMs) are extensively used in thermal management applications especially in the microelectronics industry. With the advancement in microprocessors design and speed, the thermal management is becoming more complex. With these advancements in microelectronics, there have been parallel advancements in thermal interface materials. Given the vast number of

Thermal interface materials (TIMs) are extensively used in thermal management applications especially in the microelectronics industry. With the advancement in microprocessors design and speed, the thermal management is becoming more complex. With these advancements in microelectronics, there have been parallel advancements in thermal interface materials. Given the vast number of available TIM types, selection of the material for each specific application is crucial. Most of the metrologies currently available on the market are designed to qualify TIMs between two perfectly flat surfaces, mimicking an ideal scenario. However, in realistic applications parallel surfaces may not be the case. In this study, a unique characterization method is proposed to address the need for TIMs characterization between non-parallel surfaces. Two different metrologies are custom-designed and built to measure the impact of tilt angle on the performance of TIMs. The first metrology, Angular TIM Tester, is based on the ASTM D5470 standard with flexibility to perform characterization of the sample under induced tilt angle of the rods. The second metrology, Bare Die Tilting Metrology, is designed to validate the performance of TIM under induced tilt angle between the bare die and the cooling solution in an "in-situ" package testing format. Several types of off-the-shelf thermal interface materials were tested and the results are outlined in the study. Data were collected using both metrologies for all selected materials. It was found that small tilt angles, up to 0.6°, have an impact on thermal resistance of all materials especially for in-situ testing. In addition, resistance change between 0° and the selected tilt angle was found to be in close agreement between the two metrologies for paste-based materials and phase-change material. However, a clear difference in the thermal performance of the tested materials was observed between the two metrologies for the gap filler materials.
ContributorsHarris, Enisa (Author) / Phelan, Patrick (Thesis advisor) / Calhoun, Ronald (Committee member) / Devasenathipathy, Shankar (Committee member) / Arizona State University (Publisher)
Created2011
157441-Thumbnail Image.png
Description
Organic electronics have remained a research topic of great interest over the past few decades, with organic light emitting diodes (OLEDs) emerging as a disruptive technology for lighting and display applications. While OLED performance has improved significantly over the past decade, key issues remain unsolved such as the development of

Organic electronics have remained a research topic of great interest over the past few decades, with organic light emitting diodes (OLEDs) emerging as a disruptive technology for lighting and display applications. While OLED performance has improved significantly over the past decade, key issues remain unsolved such as the development of stable and efficient blue devices. In order to further the development of OLEDs and increase their commercial potential, innovative device architectures, novel emissive materials and high-energy hosts are designed and reported.

OLEDs employing step-wide graded-doped emissive layers were designed to improve charge balance and center the exciton formation zone leading to improved device performance. A red OLED with a peak efficiency of 16.9% and an estimated LT97 over 2,000 hours at 1,000 cd/m2 was achieved. Employing a similar structure, a sky-blue OLED was demonstrated with a peak efficiency of 17.4% and estimated LT70 over 1,300 hours at 1,000 cd/m2. Furthermore, the sky-blue OLEDs color was improved to CIE coordinates of (0.15, 0.25) while maintaining an efficiency of 16.9% and estimated LT70 over 600 hours by incorporating a fluorescent sensitizer. These devices represent literature records at the time of publication for efficient and stable platinum phosphorescent OLEDs.

A newly developed class of emitters, metal-assisted delayed-fluorescence (MADF), are demonstrated to achieve higher-energy emission from a relatively low triplet energy. A green MADF device reaches a peak efficiency of 22% with an estimated LT95 over 350 hours at 1,000 cd/m2. Additionally, a blue charge confined OLED of PtON1a-tBu demonstrated a peak efficiency above 20%, CIE coordinated of (0.16, 0.27), and emission onset at 425 nm.

High triplet energy hosts are required for the realization of stable and efficient deep blue emission. A rigid “M”-type carbazole/fluorene hybrid called mDCzPF and a carbazole/9-silafluorene hybrid called mDCzPSiF are demonstrated to have high triplet energies ET=2.88 eV and 3.03 eV respectively. Both hosts are demonstrated to have reasonable stability and can serve as a template for future material design. The techniques presented here demonstrate alternative approaches for improving the performance of OLED devices and help to bring this technology closer to widespread commercialization.
ContributorsKlimes, Kody George (Author) / Li, Jian (Thesis advisor) / Adams, James (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2019
157049-Thumbnail Image.png
Description
Soft polymer composites with improved thermal conductivity are needed for the thermal management of electronics. Interfacial thermal boundary resistance, however, prevents the efficient use of many high thermal conductivity fill materials. Magnetic alignment of ferrous fill material enforces percolation of the high thermal conductivity fill, thereby shifting the governing boundary

Soft polymer composites with improved thermal conductivity are needed for the thermal management of electronics. Interfacial thermal boundary resistance, however, prevents the efficient use of many high thermal conductivity fill materials. Magnetic alignment of ferrous fill material enforces percolation of the high thermal conductivity fill, thereby shifting the governing boundary resistance to the particle- particle interfaces and increasing the directional thermal conductivity of the polymer composite. Magnetic alignment maximizes the thermal conductivity while minimizing composite stiffening at a fill fraction of half the maximum packing factor. The directional thermal conductivity of the composite is improved by more than 2-fold. Particle-particle contact engineering is then introduced to decrease the particle- particle boundary resistance and further improve the thermal conductivity of the composite.

The interface between rigid fill particles is a point contact with very little interfacial area connecting them. Silver and gallium-based liquid metal (LM) coatings provide soft interfaces that, under pressure, increase the interfacial area between particles and decrease the particle-particle boundary resistance. These engineered contacts are investigated both in and out of the polymer matrix and with and without magnetic alignment of the fill. Magnetically aligned in the polymer matrix, 350nm- thick silver coatings on nickel particles produce a 1.8-fold increase in composite thermal conductivity over the aligned bare-nickel composites. The LM coatings provide similar enhancements, but require higher volumes of LM to do so. This is due to the rapid formation of gallium oxide, which introduces additional thermal boundaries and decreases the benefit of the LM coatings.

The oxide shell of LM droplets (LMDs) can be ruptured using pressure. The pressure needed to rupture LMDs matches closely to thin-walled pressure vessel theory. Furthermore, the addition of tungsten particles stabilizes the mixture for use at higher pressures. Finally, thiols and hydrochloric acid weaken the oxide shell and boost the thermal performance of the beds of LMDs by 50% at pressures much lower than 1 megapascal (MPa) to make them more suitable for use in TIMs.
ContributorsRalphs, Matthew (Author) / Rykaczewski, Konrad (Thesis advisor) / Wang, Robert Y (Thesis advisor) / Phelan, Patrick (Committee member) / Wang, Liping (Committee member) / Devasenathipathy, Shankar (Committee member) / Arizona State University (Publisher)
Created2019
154494-Thumbnail Image.png
Description
III-nitride InGaN light-emitting diodes (LEDs) enable wide range of applications in solid-state lighting, full-color displays, and high-speed visible-light communication. Conventional InGaN quantum well LEDs grown on polar c-plane substrate suffer from quantum confined Stark effect due to the large internal polarization-related fields, leading to a reduced radiative recombination rate and

III-nitride InGaN light-emitting diodes (LEDs) enable wide range of applications in solid-state lighting, full-color displays, and high-speed visible-light communication. Conventional InGaN quantum well LEDs grown on polar c-plane substrate suffer from quantum confined Stark effect due to the large internal polarization-related fields, leading to a reduced radiative recombination rate and device efficiency, which limits the performance of InGaN LEDs in high-speed communication applications. To circumvent these negative effects, non-trivial-cavity designs such as flip-chip LEDs, metallic grating coated LEDs are proposed. This oral defense will show the works on the high-modulation-speed LEDs from basic ideas to applications. Fundamental principles such as rate equations for LEDs/laser diodes (LDs), plasmonic effects, Purcell effects will be briefly introduced. For applications, the modal properties of flip-chip LEDs are solved by implementing finite difference method in order to study the modulation response. The emission properties of highly polarized InGaN LEDs coated by metallic gratings are also investigated by finite difference time domain method.
ContributorsChen, Hong (Author) / Zhao, Yuji (Thesis advisor) / Yao, Yu (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2016
154615-Thumbnail Image.png
Description
Current organic light emitting diodes (OLEDs) suffer from the low light extraction efficiency. In this thesis, novel OLED structures including photonic crystal, Fabry-Perot resonance cavity and hyperbolic metamaterials were numerically simulated and theoretically investigated. Finite-difference time-domain (FDTD) method was employed to numerically simulate the light extraction efficiency of various 3D

Current organic light emitting diodes (OLEDs) suffer from the low light extraction efficiency. In this thesis, novel OLED structures including photonic crystal, Fabry-Perot resonance cavity and hyperbolic metamaterials were numerically simulated and theoretically investigated. Finite-difference time-domain (FDTD) method was employed to numerically simulate the light extraction efficiency of various 3D OLED structures. With photonic crystal structures, a maximum of 30% extraction efficiency is achieved. A higher external quantum efficiency of 35% is derived after applying Fabry-Perot resonance cavity into OLEDs. Furthermore, different factors such as material properties, layer thicknesses and dipole polarizations and locations have been studied. Moreover, an upper limit for the light extraction efficiency of 80% is reached theoretically with perfect reflector and single dipole polarization and location. To elucidate the physical mechanism, transfer matrix method is introduced to calculate the spectral-hemispherical reflectance of the multilayer OLED structures. In addition, an attempt of using hyperbolic metamaterial in OLED has been made and resulted in 27% external quantum efficiency, due to the similar mechanism of wave interference as Fabry-Perot structure. The simulation and optimization methods and findings would facilitate the design of next generation, high-efficiency OLED devices.
ContributorsSu, Hang (Author) / Wang, Liping (Thesis advisor) / Li, Jian (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2016
155599-Thumbnail Image.png
Description
Advancements in thermal interface materials (TIMs) allows for the creation of new and more powerful electronics as they increase the heat transfer from the component to the heat sink. Current industrial options provide decent heat transfer, but the creation of TIMs with higher thermal conductivities is needed. In addition, if

Advancements in thermal interface materials (TIMs) allows for the creation of new and more powerful electronics as they increase the heat transfer from the component to the heat sink. Current industrial options provide decent heat transfer, but the creation of TIMs with higher thermal conductivities is needed. In addition, if these TIMs are elastic in nature, their effectiveness can greatly increase as they can deal with changing interfaces without degradation of their properties. The research performed delves into this idea, creating elastic TIMs using liquid metal (LM), in this case galinstan, along with other matrix particles embedded in Polydimethylsiloxane (PDMS) to create an easy to use, relatively inexpensive, thermally conductive, but electrically insulative, pad with increased thermal conductivity from industrial solutions.

The pads were created using varying amounts of LM and matrix materials ranging from copper microspheres to diamond powder mixed into PDMS using a high-speed mixer. The material was then cast into molds and cured to create the pads. Once the pads were created, the difficulty came in quantifying their thermal properties. A stepped bar apparatus (SBA) following ASTM D5470 was created to measure the thermal resistance of the pads but it was determined that thermal conductivity was a more usable metric of the pads’ performance. This meant that the pad’s in-situ thickness was needed during testing, prompting the installation of a linear encoder to measure the thickness. The design and analysis of the necessary modification and proposed future design is further detailed in the following paper.
ContributorsKemme, Nicholas (Author) / Rykaczewski, Konrad (Thesis advisor) / Wang, Robert (Thesis advisor) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2017