Matching Items (7)
Filtering by

Clear all filters

151142-Thumbnail Image.png
Description
This dissertation addresses challenges pertaining to multi-junction (MJ) solar cells from material development to device design and characterization. Firstly, among the various methods to improve the energy conversion efficiency of MJ solar cells using, a novel approach proposed recently is to use II-VI (MgZnCd)(SeTe) and III-V (AlGaIn)(AsSb) semiconductors lattice-matched on

This dissertation addresses challenges pertaining to multi-junction (MJ) solar cells from material development to device design and characterization. Firstly, among the various methods to improve the energy conversion efficiency of MJ solar cells using, a novel approach proposed recently is to use II-VI (MgZnCd)(SeTe) and III-V (AlGaIn)(AsSb) semiconductors lattice-matched on GaSb or InAs substrates for current-matched subcells with minimal defect densities. CdSe/CdTe superlattices are proposed as a potential candidate for a subcell in the MJ solar cell designs using this material system, and therefore the material properties of the superlattices are studied. The high structural qualities of the superlattices are obtained from high resolution X-ray diffraction measurements and cross-sectional transmission electron microscopy images. The effective bandgap energies of the superlattices obtained from the photoluminescence (PL) measurements vary with the layer thicknesses, and are smaller than the bandgap energies of either the constituent material. Furthermore, The PL peak position measured at the steady state exhibits a blue shift that increases with the excess carrier concentration. These results confirm a strong type-II band edge alignment between CdSe and CdTe. The valence band offset between unstrained CdSe and CdTe is determined as 0.63 eV±0.06 eV by fitting the measured PL peak positions using the Kronig-Penney model. The blue shift in PL peak position is found to be primarily caused by the band bending effect based on self-consistent solutions of the Schrödinger and Poisson equations. Secondly, the design of the contact grid layout is studied to maximize the power output and energy conversion efficiency for concentrator solar cells. Because the conventional minimum power loss method used for the contact design is not accurate in determining the series resistance loss, a method of using a distributed series resistance model to maximize the power output is proposed for the contact design. It is found that the junction recombination loss in addition to the series resistance loss and shadowing loss can significantly affect the contact layout. The optimal finger spacing and maximum efficiency calculated by the two methods are close, and the differences are dependent on the series resistance and saturation currents of solar cells. Lastly, the accurate measurements of external quantum efficiency (EQE) are important for the design and development of MJ solar cells. However, the electrical and optical couplings between the subcells have caused EQE measurement artifacts. In order to interpret the measurement artifacts, DC and small signal models are built for the bias condition and the scan of chopped monochromatic light in the EQE measurements. Characterization methods are developed for the device parameters used in the models. The EQE measurement artifacts are found to be caused by the shunt and luminescence coupling effects, and can be minimized using proper voltage and light biases. Novel measurement methods using a pulse voltage bias or a pulse light bias are invented to eliminate the EQE measurement artifacts. These measurement methods are nondestructive and easy to implement. The pulse voltage bias or pulse light bias is superimposed on the conventional DC voltage and light biases, in order to control the operating points of the subcells and counterbalance the effects of shunt and luminescence coupling. The methods are demonstrated for the first time to effectively eliminate the measurement artifacts.
ContributorsLi, Jingjing (Author) / Zhang, Yong-Hang (Thesis advisor) / Tao, Meng (Committee member) / Schroder, Dieter (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2012
155942-Thumbnail Image.png
Description
In recent years, there has been increased interest in the Indium Gallium Nitride (InGaN) material system for photovoltaic (PV) applications. The InGaN alloy system has demonstrated high performance for high frequency power devices, as well as for optical light emitters. This material system is also promising for photovoltaic applications

In recent years, there has been increased interest in the Indium Gallium Nitride (InGaN) material system for photovoltaic (PV) applications. The InGaN alloy system has demonstrated high performance for high frequency power devices, as well as for optical light emitters. This material system is also promising for photovoltaic applications due to broad range of bandgaps of InxGa1-xN alloys from 0.65 eV (InN) to 3.42 eV (GaN), which covers most of the electromagnetic spectrum from ultraviolet to infrared wavelengths. InGaN’s high absorption coefficient, radiation resistance and thermal stability (operating with temperature > 450 ℃) makes it a suitable PV candidate for hybrid concentrating solar thermal systems as well as other high temperature applications. This work proposed a high efficiency InGaN-based 2J tandem cell for high temperature (450 ℃) and concentration (200 X) hybrid concentrated solar thermal (CSP) application via numerical simulation. In order to address the polarization and band-offset issues for GaN/InGaN hetero-solar cells, band-engineering techniques are adopted and a simple interlayer is proposed at the hetero-interface rather than an Indium composition grading layer which is not practical in fabrication. The base absorber thickness and doping has been optimized for 1J cell performance and current matching has been achieved for 2J tandem cell design. The simulations also suggest that the issue of crystalline quality (i.e. short SRH lifetime) of the nitride material system to date is a crucial factor limiting the performance of the designed 2J cell at high temperature. Three pathways to achieve ~25% efficiency have been proposed under 450 ℃ and 200 X. An anti-reflection coating (ARC) for the InGaN solar cell optical management has been designed. Finally, effective mobility model for quantum well solar cells has been developed for efficient quasi-bulk simulation.
ContributorsFang, Yi, Ph.D (Author) / Vasileska, Dragica (Thesis advisor) / Goodnick, Stephen (Thesis advisor) / Ponce, Fernando (Committee member) / Nemanich, Robert (Committee member) / Arizona State University (Publisher)
Created2017
156493-Thumbnail Image.png
Description
This dissertation describes the characterization of optoelectronic and electronic materials being considered for next generation semiconductor devices, primarily using electron microscopy techniques. The research included refinement of growth parameters for optimizing material quality, and investigation of heterostructured interfaces. The results provide better understanding of the fundamental materials science and should

This dissertation describes the characterization of optoelectronic and electronic materials being considered for next generation semiconductor devices, primarily using electron microscopy techniques. The research included refinement of growth parameters for optimizing material quality, and investigation of heterostructured interfaces. The results provide better understanding of the fundamental materials science and should lead to future improvements in device applications.

A microstructural study of tin selenide and tin manganese selenide thin films grown by molecular beam epitaxy (MBE) on GaAs (111)B substrates with different Se:Sn flux ratios and Mn concentrations was carried out. Low flux ratios lead to highly defective films, mostly consisting of SnSe, whereas higher flux ratios gave higher quality, single-phase SnSe2. The ternary (Sn,Mn)Se films evolved quasi-coherently, as the Mn concentration increased, from SnSe2 into a complex lattice, and then into MnSe with 3D rock-salt structure. These structural transformations should underlie the evolution of magnetic properties of this ternary system reported earlier in the literature.

II-VI/III-V compound semiconductor heterostructures have been characterized for growth in both single- and dual-chamber MBE systems. Three groups of lattice-matched materials have been investigated: i) 5.65Å materials based on GaAs, ii) 6.1Å materials based on InAs or GaSb, and iii) 6.5Å materials based on InSb. High quality II-VI materials grown on III-V substrates were demonstrated for ZnTe/GaSb and CdTe/InSb. III-V materials grown on II-VI buffer layers present additional challenges and were grown with varying degrees of success. InAsSb quantum wells in between ZnTe barriers were nearly defect-free, but showed 3D island growth. All other materials demonstrated flat interfaces, despite low growth temperature, but with stacking faults in the II-VI materials.

Femtosecond laser-induced defects (LIDs) in silicon solar cells were characterized using a variety of electron microscopy techniques. Scanning electron microscope (SEM) images showed that the intersections of laser lines, finger and busbar intersections, exhibited LIDs with the potential to shunt the contacts. SEM and transmission electron microscope (TEM) images correlated these LIDs with ablated c-Si and showed these defects to come in two sizes ~40nm and ~.5µm. The elemental profiles across defective and non-defective regions were found using energy dispersive x-ray spectroscopy.
ContributorsTracy, Brian David (Author) / Smith, David J. (Thesis advisor) / Bennett, Peter A (Committee member) / Drucker, Jeffery (Committee member) / Mccartney, Martha R (Committee member) / Zhang, Yong-Hang (Committee member) / Arizona State University (Publisher)
Created2018
157046-Thumbnail Image.png
Description
Wide bandgap (WBG) semiconductors GaN (3.4 eV), Ga2O3 (4.8 eV) and AlN (6.2 eV), have gained considerable interests for energy-efficient optoelectronic and electronic applications in solid-state lighting, photovoltaics, power conversion, and so on. They can offer unique device performance compared with traditional semiconductors such as Si. Efficient GaN based light-emitting

Wide bandgap (WBG) semiconductors GaN (3.4 eV), Ga2O3 (4.8 eV) and AlN (6.2 eV), have gained considerable interests for energy-efficient optoelectronic and electronic applications in solid-state lighting, photovoltaics, power conversion, and so on. They can offer unique device performance compared with traditional semiconductors such as Si. Efficient GaN based light-emitting diodes (LEDs) have increasingly displaced incandescent and fluorescent bulbs as the new major light sources for lighting and display. In addition, due to their large bandgap and high critical electrical field, WBG semiconductors are also ideal candidates for efficient power conversion.

In this dissertation, two types of devices are demonstrated: optoelectronic and electronic devices. Commercial polar c-plane LEDs suffer from reduced efficiency with increasing current densities, knowns as “efficiency droop”, while nonpolar/semipolar LEDs exhibit a very low efficiency droop. A modified ABC model with weak phase space filling effects is proposed to explain the low droop performance, providing insights for designing droop-free LEDs. The other emerging optoelectronics is nonpolar/semipolar III-nitride intersubband transition (ISBT) based photodetectors in terahertz and far infrared regime due to the large optical phonon energy and band offset, and the potential of room-temperature operation. ISBT properties are systematically studied for devices with different structures parameters.

In terms of electronic devices, vertical GaN p-n diodes and Schottky barrier diodes (SBDs) with high breakdown voltages are homoepitaxially grown on GaN bulk substrates with much reduced defect densities and improved device performance. The advantages of the vertical structure over the lateral structure are multifold: smaller chip area, larger current, less sensitivity to surface states, better scalability, and smaller current dispersion. Three methods are proposed to boost the device performances: thick buffer layer design, hydrogen-plasma based edge termination technique, and multiple drift layer design. In addition, newly emerged Ga2O3 and AlN power electronics may outperform GaN devices. Because of the highly anisotropic crystal structure of Ga2O3, anisotropic electrical properties have been observed in Ga2O3 electronics. The first 1-kV-class AlN SBDs are demonstrated on cost-effective sapphire substrates. Several future topics are also proposed including selective-area doping in GaN power devices, vertical AlN power devices, and (Al,Ga,In)2O3 materials and devices.
ContributorsFu, Houqiang (Author) / Zhao, Yuji (Thesis advisor) / Vasileska, Dragica (Committee member) / Goodnick, Stephen (Committee member) / Yu, Hongbin (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2019
155010-Thumbnail Image.png
Description
Conductance fluctuations associated with quantum transport through quantumdot systems are currently understood to depend on the nature of the corresponding classical dynamics, i.e., integrable or chaotic. There are a couple of interesting phenomena about conductance fluctuation and quantum tunneling related to geometrical shapes of graphene systems. Firstly, in graphene quantum-dot

Conductance fluctuations associated with quantum transport through quantumdot systems are currently understood to depend on the nature of the corresponding classical dynamics, i.e., integrable or chaotic. There are a couple of interesting phenomena about conductance fluctuation and quantum tunneling related to geometrical shapes of graphene systems. Firstly, in graphene quantum-dot systems, when a magnetic field is present, as the Fermi energy or the magnetic flux is varied, both regular oscillations and random fluctuations in the conductance can occur, with alternating transitions between the two. Secondly, a scheme based on geometrical rotation of rectangular devices to effectively modulate the conductance fluctuations is presented. Thirdly, when graphene is placed on a substrate of heavy metal, Rashba spin-orbit interaction of substantial strength can occur. In an open system such as a quantum dot, the interaction can induce spin polarization. Finally, a problem using graphene systems with electron-electron interactions described by the Hubbard Hamiltonian in the setting of resonant tunneling is investigated.

Another interesting problem in quantum transport is the effect of disorder or random impurities since it is inevitable in real experiments. At first, for a twodimensional Dirac ring, as the disorder density is systematically increased, the persistent current decreases slowly initially and then plateaus at a finite nonzero value, indicating remarkable robustness of the persistent currents, which cannot be discovered in normal metal and semiconductor rings. In addition, in a Floquet system with a ribbon structure, the conductance can be remarkably enhanced by onsite disorder.

Recent years have witnessed significant interest in nanoscale physical systems, such as semiconductor supperlattices and optomechanical systems, which can exhibit distinct collective dynamical behaviors. Firstly, a system of two optically coupled optomechanical cavities is considered and the phenomenon of synchronization transition associated with quantum entanglement transition is discovered. Another useful issue is nonlinear dynamics in semiconductor superlattices caused by its key potential application lies in generating radiation sources, amplifiers and detectors in the spectral range of terahertz. In such a system, transition to multistability, i.e., the emergence of multistability with chaos as a system parameter passes through a critical point, is found and argued to be abrupt.
ContributorsYing, Lei (Author) / Lai, Ying-Cheng (Thesis advisor) / Vasileska, Dragica (Committee member) / Chen, Tingyong (Committee member) / Yao, Yu (Committee member) / Arizona State University (Publisher)
Created2016
149377-Thumbnail Image.png
Description
As the world energy demand increases, semiconductor devices with high energy conversion efficiency become more and more desirable. The energy conversion consists of two distinct processes, namely energy generation and usage. In this dissertation, novel multi-junction solar cells and light emitting diodes (LEDs) are proposed and studied for

As the world energy demand increases, semiconductor devices with high energy conversion efficiency become more and more desirable. The energy conversion consists of two distinct processes, namely energy generation and usage. In this dissertation, novel multi-junction solar cells and light emitting diodes (LEDs) are proposed and studied for high energy conversion efficiency in both processes, respectively. The first half of this dissertation discusses the practically achievable energy conversion efficiency limit of solar cells. Since the demonstration of the Si solar cell in 1954, the performance of solar cells has been improved tremendously and recently reached 41.6% energy conversion efficiency. However, it seems rather challenging to further increase the solar cell efficiency. The state-of-the-art triple junction solar cells are analyzed to help understand the limiting factors. To address these issues, the monolithically integrated II-VI and III-V material system is proposed for solar cell applications. This material system covers the entire solar spectrum with a continuous selection of energy bandgaps and can be grown lattice matched on a GaSb substrate. Moreover, six four-junction solar cells are designed for AM0 and AM1.5D solar spectra based on this material system, and new design rules are proposed. The achievable conversion efficiencies for these designs are calculated using the commercial software package Silvaco with real material parameters. The second half of this dissertation studies the semiconductor luminescence refrigeration, which corresponds to over 100% energy usage efficiency. Although cooling has been realized in rare-earth doped glass by laser pumping, semiconductor based cooling is yet to be realized. In this work, a device structure that monolithically integrates a GaAs hemisphere with an InGaAs/GaAs quantum-well thin slab LED is proposed to realize cooling in semiconductor. The device electrical and optical performance is calculated. The proposed device then is fabricated using nine times photolithography and eight masks. The critical process steps, such as photoresist reflow and dry etch, are simulated to insure successful processing. Optical testing is done with the devices at various laser injection levels and the internal quantum efficiency, external quantum efficiency and extraction efficiency are measured.
ContributorsWu, Songnan (Author) / Zhang, Yong-Hang (Thesis advisor) / Menéndez, Jose (Committee member) / Ponce, Fernando (Committee member) / Belitsky, Andrei (Committee member) / Schroder, Dieter (Committee member) / Arizona State University (Publisher)
Created2010
158089-Thumbnail Image.png
Description
Wurtzite (In, Ga, Al) N semiconductors, especially InGaN material systems, demonstrate immense promises for the high efficiency thin film photovoltaic (PV) applications for future generation. Their unique and intriguing merits include continuously tunable wide band gap from 0.70 eV to 3.4 eV, strong absorption coefficient on the order of ∼105

Wurtzite (In, Ga, Al) N semiconductors, especially InGaN material systems, demonstrate immense promises for the high efficiency thin film photovoltaic (PV) applications for future generation. Their unique and intriguing merits include continuously tunable wide band gap from 0.70 eV to 3.4 eV, strong absorption coefficient on the order of ∼105 cm−1, superior radiation resistance under harsh environment, and high saturation velocities and high mobility. Calculation from the detailed balance model also revealed that in multi-junction (MJ) solar cell device, materials with band gaps higher than 2.4 eV are required to achieve PV efficiencies greater than 50%, which is practically and easily feasible for InGaN materials. Other state-of-art modeling on InGaN solar cells also demonstrate great potential for applications of III-nitride solar cells in four-junction solar cell devices as well as in the integration with a non-III-nitride junction in multi-junction devices.

This dissertation first theoretically analyzed loss mechanisms and studied the theoretical limit of PV performance of InGaN solar cells with a semi-analytical model. Then three device design strategies are proposed to study and improve PV performance: band polarization engineering, structural design and band engineering. Moreover, three physical mechanisms related to high temperature performance of InGaN solar cells have been thoroughly investigated: thermal reliability issue, enhanced external quantum efficiency (EQE) and conversion efficiency with rising temperatures and carrier dynamics and localization effects inside nonpolar m-plane InGaN quantum wells (QWs) at high temperatures. In the end several future work will also be proposed.

Although still in its infancy, past and projected future progress of device design will ultimately achieve this very goal that III-nitride based solar cells will be indispensable for today and future’s society, technologies and society.
ContributorsHuang, Xuanqi (Author) / Zhao, Yuji (Thesis advisor) / Goodnick, Stephen M. (Committee member) / King, Richard R. (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2020