Matching Items (14)
Filtering by

Clear all filters

151955-Thumbnail Image.png
Description
This dissertation is focused on material property exploration and analysis using computational quantum mechanics methods. Theoretical calculations were performed on the recently discovered hexahydride materials A2SiH6 (A=Rb, K) to calculate the lattice dynamics of the systems in order to check for structural stability, verify the experimental Raman and infrared spectrospcopy

This dissertation is focused on material property exploration and analysis using computational quantum mechanics methods. Theoretical calculations were performed on the recently discovered hexahydride materials A2SiH6 (A=Rb, K) to calculate the lattice dynamics of the systems in order to check for structural stability, verify the experimental Raman and infrared spectrospcopy results, and obtain the theoretical free energies of formation. The electronic structure of the systems was calculated and the bonding and ionic properties of the systems were analyzed. The novel hexahydrides were compared to the important hydrogen storage material KSiH3. This showed that the hypervalent nature of the SiH62- ions reduced the Si-H bonding strength considerably. These hydrogen rich compounds could have promising energy applications as they link to alternative hydrogen fuel technology. The carbide systems Li-C (A=Li,Ca,Mg) were studied using \emph{ab initio} and evolutionary algorithms at high pressures. At ambient pressure Li2C2 and CaC2 are known to contain C22- dumbbell anions and CaC2 is polymorphic. At elevated pressure both CaC2 and Li2C2 display polymorphism. At ambient pressure the Mg-C system contains several experimentally known phases, however, all known phases are shown to be metastable with respect to the pure elements Mg and C. First principle investigation of the configurational space of these compounds via evolutionary algorithms results in a variety of metastable and unique structures. The binary compounds ZnSb and ZnAs are II-V electron-poor semiconductors with interesting thermoelectric properties. They contain rhomboid rings composed of Zn2Sb2 (Zn2As2) with multi-centered covalent bonds which are in turn covalently bonded to other rings via two-centered, two-electron bonds. Ionicity was explored via Bader charge analysis and it appears that the low ionicity that these materials display is a necessary condition of their multicentered bonding. Both compounds were found to have narrow, indirect band gaps with multi-valley valence and conduction bands; which are important characteristics for high thermopower in thermoelectric materials. Future work is needed to analyze the lattice properties of the II-V CdSb-type systems, especially in order to find the origin of the extremely low thermal conductivity that these systems display.
ContributorsBenson, Daryn Eugene (Author) / Häussermann, Ulrich (Thesis advisor) / Shumway, John (Thesis advisor) / Chamberlin, Ralph (Committee member) / Sankey, Otto (Committee member) / Treacy, Mike (Committee member) / Arizona State University (Publisher)
Created2013
151337-Thumbnail Image.png
Description
One dimensional (1D) and quasi-one dimensional quantum wires have been a subject of both theoretical and experimental interest since 1990s and before. Phenomena such as the "0.7 structure" in the conductance leave many open questions. In this dissertation, I study the properties and the internal electron states of semiconductor quantum

One dimensional (1D) and quasi-one dimensional quantum wires have been a subject of both theoretical and experimental interest since 1990s and before. Phenomena such as the "0.7 structure" in the conductance leave many open questions. In this dissertation, I study the properties and the internal electron states of semiconductor quantum wires with the path integral Monte Carlo (PIMC) method. PIMC is a tool for simulating many-body quantum systems at finite temperature. Its ability to calculate thermodynamic properties and various correlation functions makes it an ideal tool in bridging experiments with theories. A general study of the features interpreted by the Luttinger liquid theory and observed in experiments is first presented, showing the need for new PIMC calculations in this field. I calculate the DC conductance at finite temperature for both noninteracting and interacting electrons. The quantized conductance is identified in PIMC simulations without making the same approximation in the Luttinger model. The low electron density regime is subject to strong interactions, since the kinetic energy decreases faster than the Coulomb interaction at low density. An electron state called the Wigner crystal has been proposed in this regime for quasi-1D wires. By using PIMC, I observe the zig-zag structure of the Wigner crystal. The quantum fluctuations suppress the long range correla- tions, making the order short-ranged. Spin correlations are calculated and used to evaluate the spin coupling strength in a zig-zag state. I also find that as the density increases, electrons undergo a structural phase transition to a dimer state, in which two electrons of opposite spins are coupled across the two rows of the zig-zag. A phase diagram is sketched for a range of densities and transverse confinements. The quantum point contact (QPC) is a typical realization of quantum wires. I study the QPC by explicitly simulating a system of electrons in and around a Timp potential (Timp, 1992). Localization of a single electron in the middle of the channel is observed at 5 K, as the split gate voltage increases. The DC conductance is calculated, which shows the effect of the Coulomb interaction. At 1 K and low electron density, a state similar to the Wigner crystal is found inside the channel.
ContributorsLiu, Jianheng, 1982- (Author) / Shumway, John B (Thesis advisor) / Schmidt, Kevin E (Committee member) / Chen, Tingyong (Committee member) / Yu, Hongbin (Committee member) / Ros, Robert (Committee member) / Arizona State University (Publisher)
Created2012
151528-Thumbnail Image.png
Description
The heat transfer enhancements available from expanding the cross-section of a boiling microchannel are explored analytically and experimentally. Evaluation of the literature on critical heat flux in flow boiling and associated pressure drop behavior is presented with predictive critical heat flux (CHF) and pressure drop correlations. An optimum channel configuration

The heat transfer enhancements available from expanding the cross-section of a boiling microchannel are explored analytically and experimentally. Evaluation of the literature on critical heat flux in flow boiling and associated pressure drop behavior is presented with predictive critical heat flux (CHF) and pressure drop correlations. An optimum channel configuration allowing maximum CHF while reducing pressure drop is sought. A perturbation of the channel diameter is employed to examine CHF and pressure drop relationships from the literature with the aim of identifying those adequately general and suitable for use in a scenario with an expanding channel. Several CHF criteria are identified which predict an optimizable channel expansion, though many do not. Pressure drop relationships admit improvement with expansion, and no optimum presents itself. The relevant physical phenomena surrounding flow boiling pressure drop are considered, and a balance of dimensionless numbers is presented that may be of qualitative use. The design, fabrication, inspection, and experimental evaluation of four copper microchannel arrays of different channel expansion rates with R-134a refrigerant is presented. Optimum rates of expansion which maximize the critical heat flux are considered at multiple flow rates, and experimental results are presented demonstrating optima. The effect of expansion on the boiling number is considered, and experiments demonstrate that expansion produces a notable increase in the boiling number in the region explored, though no optima are observed. Significant decrease in the pressure drop across the evaporator is observed with the expanding channels, and no optima appear. Discussion of the significance of this finding is presented, along with possible avenues for future work.
ContributorsMiner, Mark (Author) / Phelan, Patrick E (Thesis advisor) / Baer, Steven (Committee member) / Chamberlin, Ralph (Committee member) / Chen, Kangping (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2013
152887-Thumbnail Image.png
Description
A series of Molybdenum-Copper bilayers were studied for use in 120mK superconducting transition edge sensors for spectrometer applications. The Transition temperature (TC) was tuned to the desired temperature using the proximity effect, by adjusting the thickness of a normal copper layer in direct contact with the superconducting molybdenum layer

A series of Molybdenum-Copper bilayers were studied for use in 120mK superconducting transition edge sensors for spectrometer applications. The Transition temperature (TC) was tuned to the desired temperature using the proximity effect, by adjusting the thickness of a normal copper layer in direct contact with the superconducting molybdenum layer in a proximitized bilayer structure. The bilayers have a fixed normal metal thickness dCu=1250 Å, on top of a variable superconductor thickness 650 Å ≤ dMo ≤ 1000 Å. Material characterization techniques including X-ray Diffraction (XRD), Rutherford Backscattering Spectroscopy (RBS), Atomic Force Microscopy (AFM), and 4-point electrical characterization are used to characterize the films. Film TC are compared with the results of the Usadel proximity theory. The results of RBS analysis demonstrated that some Argon-contamination is observed at the Mo film-substrate interface, which correlates with bilayer surface roughness (as observed with AFM), reduced crystalline quality (via XRD Rocking Curve), and a deviation from the theoretical expected TC for a bilayer. The Argon contamination is presumably the cause of interface roughness, reducing the interface transmission coefficient in the Usadel model, and producing the discrepancy from the expected TC.
ContributorsKopas, Cameron (Author) / Newman, Nathan (Thesis advisor) / Singh, Rakesh (Committee member) / Chamberlin, Ralph (Committee member) / Arizona State University (Publisher)
Created2014
150501-Thumbnail Image.png
Description
Recent literature indicates potential benefits in microchannel cooling if an inlet orifice is used to suppress pressure oscillations that develop under two-phase conditions. This study investigates the costs and benefits of using an adjustable microchannel inlet orifice. The focus is on orifice effect during steady-state boiling and critical heat flux

Recent literature indicates potential benefits in microchannel cooling if an inlet orifice is used to suppress pressure oscillations that develop under two-phase conditions. This study investigates the costs and benefits of using an adjustable microchannel inlet orifice. The focus is on orifice effect during steady-state boiling and critical heat flux (CHF) in the channels using R134a in a pumped refrigerant loop (PRL). To change orifice size, a dam controlled with a micrometer was placed in front of 31 parallel microchannels. Each channel had a hydraulic diameter of 0.235 mm and a length of 1.33 cm. For steady state two-phase conditions, mass fluxes of 300 kg m-2 s-1 and 600 kg m-2 s-1were investigated. For orifice sizes with a hydraulic diameter to unrestricted hydraulic diameter (Dh:Dh,ur) ratio less than 35 percent, oscillations were reduced and wall temperatures fell up to 1.5 °C. Critical heat flux data were obtained for 7 orifice sizes with mass fluxes from 186 kg m-2 s-1 to 847 kg m-2 s-1. For all mass fluxes and inlet conditions tested, CHF values for a Dh:Dh,ur ratio of 1.8 percent became increasingly lower (up to 37 W cm-2 less) than those obtained with larger orifices. An optimum orifice size with Dh:Dh,ur of 35 percent emerged, offering up to 5 W cm-2 increase in CHF over unrestricted conditions at the highest mass flux tested, 847 kg m-2 s-1. These improvements in cooling ability with inlet orifices in place under both steady-state and impending CHF conditions are modest, leading to the conclusion that inlet orifices are only mildly effective at improving heat transfer coefficients. Stability of the PRL used for experimentation was also studied and improved. A vapor compression cycle's (VCC) proportional, integral, and derivative controller was found to adversely affect stability within the PRL and cause premature CHF. Replacing the VCC with an ice water heat sink maintained steady pumped loop system pressures and mass flow rates. The ice water heat sink was shown to have energy cost savings over the use of a directly coupled VCC for removing heat from the PRL.
ContributorsOdom, Brent A (Author) / Phelan, Patrick E (Thesis advisor) / Herrmann, Marcus (Committee member) / Trimble, Steve (Committee member) / Tasooji, Amaneh (Committee member) / Holcomb, Don (Committee member) / Arizona State University (Publisher)
Created2012
151155-Thumbnail Image.png
Description
In this dissertation, in-situ X-ray and ultraviolet photoemission spectroscopy have been employed to study the interface chemistry and electronic structure of potential high-k gate stack materials. In these gate stack materials, HfO2 and La2O3 are selected as high-k dielectrics, VO2 and ZnO serve as potential channel layer materials. The gate

In this dissertation, in-situ X-ray and ultraviolet photoemission spectroscopy have been employed to study the interface chemistry and electronic structure of potential high-k gate stack materials. In these gate stack materials, HfO2 and La2O3 are selected as high-k dielectrics, VO2 and ZnO serve as potential channel layer materials. The gate stack structures have been prepared using a reactive electron beam system and a plasma enhanced atomic layer deposition system. Three interrelated issues represent the central themes of the research: 1) the interface band alignment, 2) candidate high-k materials, and 3) band bending, internal electric fields, and charge transfer. 1) The most highlighted issue is the band alignment of specific high-k structures. Band alignment relationships were deduced by analysis of XPS and UPS spectra for three different structures: a) HfO2/VO2/SiO2/Si, b) HfO2-La2O3/ZnO/SiO2/Si, and c) HfO2/VO2/ HfO2/SiO2/Si. The valence band offset of HfO2/VO2, ZnO/SiO2 and HfO2/SiO2 are determined to be 3.4 ± 0.1, 1.5 ± 0.1, and 0.7 ± 0.1 eV. The valence band offset between HfO2-La2O3 and ZnO was almost negligible. Two band alignment models, the electron affinity model and the charge neutrality level model, are discussed. The results show the charge neutrality model is preferred to describe these structures. 2) High-k candidate materials were studied through comparison of pure Hf oxide, pure La oxide, and alloyed Hf-La oxide films. An issue with the application of pure HfO2 is crystallization which may increase the leakage current in gate stack structures. An issue with the application of pure La2O3 is the presence of carbon contamination in the film. Our study shows that the alloyed Hf-La oxide films exhibit an amorphous structure along with reduced carbon contamination. 3) Band bending and internal electric fields in the gate stack structure were observed by XPS and UPS and indicate the charge transfer during the growth and process. The oxygen plasma may induce excess oxygen species with negative charges, which could be removed by He plasma treatment. The final HfO2 capping layer deposition may reduce the internal potential inside the structures. The band structure was approaching to a flat band condition.
ContributorsZhu, Chiyu (Author) / Nemanich, Robert (Thesis advisor) / Chamberlin, Ralph (Committee member) / Chen, Tingyong (Committee member) / Ponce, Fernando (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2012
154170-Thumbnail Image.png
Description
A theoretical study of a three-dimensional (3D) N/S interface with arbitrary spin

polarization and interface geometry is presented. The 3D model gives the same intrinsic

spin polarization and superconducting gap dependence as the 1D model. This

demonstrates that the 1D model can be use to t 3D data.

Using this model, a Heusler alloy

A theoretical study of a three-dimensional (3D) N/S interface with arbitrary spin

polarization and interface geometry is presented. The 3D model gives the same intrinsic

spin polarization and superconducting gap dependence as the 1D model. This

demonstrates that the 1D model can be use to t 3D data.

Using this model, a Heusler alloy is investigated. Andreev reflection measurements

show that the spin polarization is 80% in samples sputtered on unheated MgO(100)

substrates and annealed at high temperatures. However, the spin polarization is

considerably smaller in samples deposited on heated substrates.

Ferromagnetic FexSi􀀀x alloys have been proposed as potential spin injectors into

silicon with a substantial spin polarization. Andreev Reflection Spectroscopy (ARS) is

utilized to determine the spin polarization of both amorphous and crystalline Fe65Si35

alloys. The amorphous phase has a significantly higher spin polarization than that of

the crystalline phase.

In this thesis, (1111) Fe SmO0:82F0:18FeAs and Pb superconductors are used to

measure the spin polarization of a highly spin-polarized material, La0:67Sr0:33MnO3.

Both materials yield the same intrinsic spin polarization, therefore, Fe-superconductors

can be used in ARS. Based on the behavior of the differential conductance for highly

spin polarized LSMO and small polarization of Au, it can be concluded that the Fe-Sc

is not a triplet superconductor.

Zero bias anomaly (ZBA), in point contact Andreev reflection (PCAR), has been

utilized as a characteristic feature to reveal many novel physics. Complexities at a

normal metal/superconducting interface often cause nonessential ZBA-like features,

which may be mistaken as ZBA. In this work, it is shown that an extrinsic ZBA,

which is due to the contact resistance, cannot be suppressed by a highly spin-polarized

current while a nonessential ZBA cannot be affected the contact resistance.

Finally, Cu/Cu multilayer GMR structures were fabricated and the GMR% measured

at 300 K and 4.5 K gave responses of 63% and 115% respectively. Not only

do the GMR structures have a large enhancement of resistance, but by applying an

external magnetic eld it is shown that, unlike most materials, the spin polarization

can be tuned to values of 0.386 to 0.415 from H = 0 kOe to H = 15 kOe.
ContributorsGifford, Jessica Anna (Author) / Chen, Tingyong (Thesis advisor) / Bennett, Peter (Committee member) / Nemanich, Robert (Committee member) / Tsen, Kong-Thon (Committee member) / Arizona State University (Publisher)
Created2015
156585-Thumbnail Image.png
Description
Chemical Vapor Deposition (CVD) is the most widely used method to grow large-scale single layer graphene. However, a systematic experimental study of the relationship between growth parameters and graphene film morphology, especially in the industrially preferred cold wall CVD, has not been undertaken previously. This research endeavored to address this

Chemical Vapor Deposition (CVD) is the most widely used method to grow large-scale single layer graphene. However, a systematic experimental study of the relationship between growth parameters and graphene film morphology, especially in the industrially preferred cold wall CVD, has not been undertaken previously. This research endeavored to address this and provide comprehensive insight into the growth physics of graphene on supported solid and liquid Cu films using cold wall CVD.

A multi-chamber UHV system was customized and transformed into a cold wall CVD system to perform experiments. The versatile growth process was completely custom-automated by controlling the process parameters with LabVIEW. Graphene growth was explored on solid electrodeposited, recrystallized and thin sputter deposited Cu films as well as on liquid Cu supported on W/Mo refractory substrates under ambient pressure using Ar, H₂ and CH₄ mixtures.

The results indicate that graphene grown on Cu films using cold wall CVD follows a classical two-dimensional nucleation and growth mechanism. The nucleation density decreases and average size of graphene crystallites increases with increasing dilution of the CH₄/H₂ mixture by Ar, decrease in total flow rate and decrease in CH₄:H₂ ratio at a fixed substrate temperature and chamber pressure. Thus, the resulting morphological changes correspond with those that would be expected if the precursor deposition rate was varied at a fixed substrate temperature for physical deposition using thermal evaporation. The evolution of graphene crystallite boundary morphology with decreasing effective C deposition rate indicates the effect of edge diffusion of C atoms along the crystallite boundaries, in addition to H₂ etching, on graphene crystallite shape.

The roles of temperature gradient, chamber pressure and rapid thermal heating in C precursor-rich environment on graphene growth morphology on thin sputtered Cu films were explained. The growth mechanisms of graphene on substrates annealed under reducing and non-reducing environment were explained from the scaling functions of graphene island size distribution in the pre-coalescence regime. It is anticipated that applying the pre-coalescence size distribution method presented in this work to other 2D material systems may be useful for elucidating atomistic mechanisms of film growth that are otherwise difficult to obtain.
ContributorsDas, Shantanu, Ph.D (Author) / Drucker, Jeff (Thesis advisor) / Alford, Terry (Committee member) / Chen, Tingyong (Committee member) / Arizona State University (Publisher)
Created2018
156821-Thumbnail Image.png
Description
In this dissertation I studied the anomalous Hall effect in MgO/Permalloy/Nonmagnetic Metal(NM) based structure, spin polarized current in YIG/Pt based thin films and the origin of the perpendicular magnetic anisotropy(PMA) in the Ru/Co/Ru based structures.

The anomalous Hall effect is the observation of a nonzero voltage difference across a magnetic

In this dissertation I studied the anomalous Hall effect in MgO/Permalloy/Nonmagnetic Metal(NM) based structure, spin polarized current in YIG/Pt based thin films and the origin of the perpendicular magnetic anisotropy(PMA) in the Ru/Co/Ru based structures.

The anomalous Hall effect is the observation of a nonzero voltage difference across a magnetic material transverse to the current that flows through the material and the external magnetic field. Unlike the ordinary Hall effect which is observed in nonmagnetic metals, the anomalous Hall effect is only observed in magnetic materials and is orders of magnitude larger than the ordinary Hall effect. Unlike quantum anomalous Hall effect which only works in low temperature and extremely large magnetic field, anomalous Hall effect can be measured at room temperature under a relatively small magnetic field. This allows the anomalous Hall effect to have great potential applications in spintronics and be a good characterization tool for ferromagnetic materials especially materials that have perpendicular magnetic anisotropy(PMA).

In my research, it is observed that a polarity change of the Hall resistance in the MgO/Permalloy/NM structure can be obtained when certain nonmagnetic metal is used as the capping layer while no polarity change is observed when some other metal is used as the capping layer. This allows us to tune the polarity of the anomalous Hall effect by changing the thickness of a component of the structure. My conclusion is that an intrinsic mechanism from Berry curvature plays an important role in the sign of anomalous Hall resistivity in the MgO/Py/HM structures. Surface and interfacial scattering also make substantial contribution to the measured Hall resistivity.

Spin polarization(P) is one of the key concepts in spintronics and is defined as the difference in the spin up and spin down electron population near the Fermi level of a conductor. It has great applications in the spintronics field such as the creation of spin transfer torques, magnetic tunnel junction(MTJ), spintronic logic devices.

In my research, spin polarization is measured on platinum layers grown on a YIG layer. Platinum is a nonmagnetic metal with strong spin orbit coupling which intrinsically has zero spin polarization. Nontrivial spin polarization measured by ARS is observed in the Pt layer when it is grown on YIG ferromagnetic insulator. This result is contrary to the zero spin polarization in the Pt layer when it is grown directly on SiO2 substrate. Magnetic proximity effect and spin current pumping from YIG into Pt is proposed as the reason of the nontrivial spin polarization induced in Pt. An even higher spin polarization in the Pt layer is observed when an ultrathin NiO layer or Cu layer is inserted between Pt and YIG which blocks the proximity effect. The spin polarization in the NiO inserted sample shows temperature dependence. This demonstrates that the spin current transmission is further enhanced in ultrathin NiO layers through magnon and spin fluctuations.

Perpendicular Magnetic Anisotropy(PMA) has important applications in spintronics and magnetic storage. In the last chapter, I study the origin of PMA in one of the structures that shows PMA: Ru/Co/Ru. By measuring the ARS curve while changing the magnetic field orientation, the origin of the PMA in this structure is determined to be the strain induced by lattice mismatch.
ContributorsLi, Bochao (Author) / Chen, Tingyong (Committee member) / Bennett, Peter (Committee member) / Nemanich, Robert (Committee member) / Qing, Quan (Committee member) / Arizona State University (Publisher)
Created2018
155010-Thumbnail Image.png
Description
Conductance fluctuations associated with quantum transport through quantumdot systems are currently understood to depend on the nature of the corresponding classical dynamics, i.e., integrable or chaotic. There are a couple of interesting phenomena about conductance fluctuation and quantum tunneling related to geometrical shapes of graphene systems. Firstly, in graphene quantum-dot

Conductance fluctuations associated with quantum transport through quantumdot systems are currently understood to depend on the nature of the corresponding classical dynamics, i.e., integrable or chaotic. There are a couple of interesting phenomena about conductance fluctuation and quantum tunneling related to geometrical shapes of graphene systems. Firstly, in graphene quantum-dot systems, when a magnetic field is present, as the Fermi energy or the magnetic flux is varied, both regular oscillations and random fluctuations in the conductance can occur, with alternating transitions between the two. Secondly, a scheme based on geometrical rotation of rectangular devices to effectively modulate the conductance fluctuations is presented. Thirdly, when graphene is placed on a substrate of heavy metal, Rashba spin-orbit interaction of substantial strength can occur. In an open system such as a quantum dot, the interaction can induce spin polarization. Finally, a problem using graphene systems with electron-electron interactions described by the Hubbard Hamiltonian in the setting of resonant tunneling is investigated.

Another interesting problem in quantum transport is the effect of disorder or random impurities since it is inevitable in real experiments. At first, for a twodimensional Dirac ring, as the disorder density is systematically increased, the persistent current decreases slowly initially and then plateaus at a finite nonzero value, indicating remarkable robustness of the persistent currents, which cannot be discovered in normal metal and semiconductor rings. In addition, in a Floquet system with a ribbon structure, the conductance can be remarkably enhanced by onsite disorder.

Recent years have witnessed significant interest in nanoscale physical systems, such as semiconductor supperlattices and optomechanical systems, which can exhibit distinct collective dynamical behaviors. Firstly, a system of two optically coupled optomechanical cavities is considered and the phenomenon of synchronization transition associated with quantum entanglement transition is discovered. Another useful issue is nonlinear dynamics in semiconductor superlattices caused by its key potential application lies in generating radiation sources, amplifiers and detectors in the spectral range of terahertz. In such a system, transition to multistability, i.e., the emergence of multistability with chaos as a system parameter passes through a critical point, is found and argued to be abrupt.
ContributorsYing, Lei (Author) / Lai, Ying-Cheng (Thesis advisor) / Vasileska, Dragica (Committee member) / Chen, Tingyong (Committee member) / Yao, Yu (Committee member) / Arizona State University (Publisher)
Created2016