Matching Items (7)
Filtering by

Clear all filters

151605-Thumbnail Image.png
Description
In most social networking websites, users are allowed to perform interactive activities. One of the fundamental features that these sites provide is to connecting with users of their kind. On one hand, this activity makes online connections visible and tangible; on the other hand, it enables the exploration of our

In most social networking websites, users are allowed to perform interactive activities. One of the fundamental features that these sites provide is to connecting with users of their kind. On one hand, this activity makes online connections visible and tangible; on the other hand, it enables the exploration of our connections and the expansion of our social networks easier. The aggregation of people who share common interests forms social groups, which are fundamental parts of our social lives. Social behavioral analysis at a group level is an active research area and attracts many interests from the industry. Challenges of my work mainly arise from the scale and complexity of user generated behavioral data. The multiple types of interactions, highly dynamic nature of social networking and the volatile user behavior suggest that these data are complex and big in general. Effective and efficient approaches are required to analyze and interpret such data. My work provide effective channels to help connect the like-minded and, furthermore, understand user behavior at a group level. The contributions of this dissertation are in threefold: (1) proposing novel representation of collective tagging knowledge via tag networks; (2) proposing the new information spreader identification problem in egocentric soical networks; (3) defining group profiling as a systematic approach to understanding social groups. In sum, the research proposes novel concepts and approaches for connecting the like-minded, enables the understanding of user groups, and exposes interesting research opportunities.
ContributorsWang, Xufei (Author) / Liu, Huan (Thesis advisor) / Kambhampati, Subbarao (Committee member) / Sundaram, Hari (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2013
153030-Thumbnail Image.png
Description
Sarcasm is a nuanced form of language where usually, the speaker explicitly states the opposite of what is implied. Imbued with intentional ambiguity and subtlety, detecting sarcasm is a difficult task, even for humans. Current works approach this challenging problem primarily from a linguistic perspective, focusing on the lexical and

Sarcasm is a nuanced form of language where usually, the speaker explicitly states the opposite of what is implied. Imbued with intentional ambiguity and subtlety, detecting sarcasm is a difficult task, even for humans. Current works approach this challenging problem primarily from a linguistic perspective, focusing on the lexical and syntactic aspects of sarcasm. In this thesis, I explore the possibility of using behavior traits intrinsic to users of sarcasm to detect sarcastic tweets. First, I theorize the core forms of sarcasm using findings from the psychological and behavioral sciences, and some observations on Twitter users. Then, I develop computational features to model the manifestations of these forms of sarcasm using the user's profile information and tweets. Finally, I combine these features to train a supervised learning model to detect sarcastic tweets. I perform experiments to extensively evaluate the proposed behavior modeling approach and compare with the state-of-the-art.
ContributorsRajadesingan, Ashwin (Author) / Liu, Huan (Thesis advisor) / Kambhampati, Subbarao (Committee member) / Pon-Barry, Heather (Committee member) / Arizona State University (Publisher)
Created2014
156236-Thumbnail Image.png
Description
Reasoning about actions forms the basis of many tasks such as prediction, planning, and diagnosis in a dynamic domain. Within the reasoning about actions community, a broad class of languages, called action languages, has been developed together with a methodology for their use in representing and reasoning about dynamic domains.

Reasoning about actions forms the basis of many tasks such as prediction, planning, and diagnosis in a dynamic domain. Within the reasoning about actions community, a broad class of languages, called action languages, has been developed together with a methodology for their use in representing and reasoning about dynamic domains. With a few notable exceptions, the focus of these efforts has largely centered around single-agent systems. Agents rarely operate in a vacuum however, and almost in parallel, substantial work has been done within the dynamic epistemic logic community towards understanding how the actions of an agent may effect not just his own knowledge and/or beliefs, but those of his fellow agents as well. What is less understood by both communities is how to represent and reason about both the direct and indirect effects of both ontic and epistemic actions within a multi-agent setting. This dissertation presents ongoing research towards a framework for representing and reasoning about dynamic multi-agent domains involving both classes of actions.

The contributions of this work are as follows: the formulation of a precise mathematical model of a dynamic multi-agent domain based on the notion of a transition diagram; the development of the multi-agent action languages mA+ and mAL based upon this model, as well as preliminary investigations of their properties and implementations via logic programming under the answer set semantics; precise formulations of the temporal projection, and planning problems within a multi-agent context; and an investigation of the application of the proposed approach to the representation of, and reasoning about, scenarios involving the modalities of knowledge and belief.
ContributorsGelfond, Gregory (Author) / Baral, Chitta (Thesis advisor) / Kambhampati, Subbarao (Committee member) / Lee, Joohyung (Committee member) / Moss, Larry (Committee member) / Cao Son, Tran (Committee member) / Arizona State University (Publisher)
Created2018
157311-Thumbnail Image.png
Description
Knowledge Representation (KR) is one of the prominent approaches to Artificial Intelligence (AI) that is concerned with representing knowledge in a form that computer systems can utilize to solve complex problems. Answer Set Programming (ASP), based on the stable model semantics, is a widely-used KR framework that facilitates elegant and

Knowledge Representation (KR) is one of the prominent approaches to Artificial Intelligence (AI) that is concerned with representing knowledge in a form that computer systems can utilize to solve complex problems. Answer Set Programming (ASP), based on the stable model semantics, is a widely-used KR framework that facilitates elegant and efficient representations for many problem domains that require complex reasoning.

However, while ASP is effective on deterministic problem domains, it is not suitable for applications involving quantitative uncertainty, for example, those that require probabilistic reasoning. Furthermore, it is hard to utilize information that can be statistically induced from data with ASP problem modeling.

This dissertation presents the language LP^MLN, which is a probabilistic extension of the stable model semantics with the concept of weighted rules, inspired by Markov Logic. An LP^MLN program defines a probability distribution over "soft" stable models, which may not satisfy all rules, but the more rules with the bigger weights they satisfy, the bigger their probabilities. LP^MLN takes advantage of both ASP and Markov Logic in a single framework, allowing representation of problems that require both logical and probabilistic reasoning in an intuitive and elaboration tolerant way.

This dissertation establishes formal relations between LP^MLN and several other formalisms, discusses inference and weight learning algorithms under LP^MLN, and presents systems implementing the algorithms. LP^MLN systems can be used to compute other languages translatable into LP^MLN.

The advantage of LP^MLN for probabilistic reasoning is illustrated by a probabilistic extension of the action language BC+, called pBC+, defined as a high-level notation of LP^MLN for describing transition systems. Various probabilistic reasoning about transition systems, especially probabilistic diagnosis, can be modeled in pBC+ and computed using LP^MLN systems. pBC+ is further extended with the notion of utility, through a decision-theoretic extension of LP^MLN, and related with Markov Decision Process (MDP) in terms of policy optimization problems. pBC+ can be used to represent (PO)MDP in a succinct and elaboration tolerant way, which enables planning with (PO)MDP algorithms in action domains whose description requires rich KR constructs, such as recursive definitions and indirect effects of actions.
ContributorsWang, Yi (Author) / Lee, Joohyung (Thesis advisor) / Baral, Chitta (Committee member) / Kambhampati, Subbarao (Committee member) / Natarajan, Sriraam (Committee member) / Srivastava, Siddharth (Committee member) / Arizona State University (Publisher)
Created2019
149454-Thumbnail Image.png
Description
Goal specification is an important aspect of designing autonomous agents. A goal does not only refer to the set of states for the agent to reach. A goal also defines restrictions on the paths the agent should follow. Temporal logics are widely used in goal specification. However, they lack the

Goal specification is an important aspect of designing autonomous agents. A goal does not only refer to the set of states for the agent to reach. A goal also defines restrictions on the paths the agent should follow. Temporal logics are widely used in goal specification. However, they lack the ability to represent goals in a non-deterministic domain, goals that change non-monotonically, and goals with preferences. This dissertation defines new goal specification languages by extending temporal logics to address these issues. First considered is the goal specification in non-deterministic domains, in which an agent following a policy leads to a set of paths. A logic is proposed to distinguish paths of the agent from all paths in the domain. In addition, to address the need of comparing policies for finding the best ones, a language capable of quantifying over policies is proposed. As policy structures of agents play an important role in goal specification, languages are also defined by considering different policy structures. Besides, after an agent is given an initial goal, the agent may change its expectations or the domain may change, thus goals that are previously specified may need to be further updated, revised, partially retracted, or even completely changed. Non-monotonic goal specification languages that can make these changes in an elaboration tolerant manner are needed. Two languages that rely on labeling sub-formulas and connecting multiple rules are developed to address non-monotonicity in goal specification. Also, agents may have preferential relations among sub-goals, and the preferential relations may change as agents achieve other sub-goals. By nesting a comparison operator with other temporal operators, a language with dynamic preferences is proposed. Various goals that cannot be expressed in other languages are expressed in the proposed languages. Finally, plans are given for some goals specified in the proposed languages.
ContributorsZhao, Jicheng (Author) / Baral, Chitta (Thesis advisor) / Kambhampati, Subbarao (Committee member) / Lee, Joohyung (Committee member) / Lifschitz, Vladimir (Committee member) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2010
157582-Thumbnail Image.png
Description
The rapid advancements of technology have greatly extended the ubiquitous nature of smartphones acting as a gateway to numerous social media applications. This brings an immense convenience to the users of these applications wishing to stay connected to other individuals through sharing their statuses, posting their opinions, experiences, suggestions, etc

The rapid advancements of technology have greatly extended the ubiquitous nature of smartphones acting as a gateway to numerous social media applications. This brings an immense convenience to the users of these applications wishing to stay connected to other individuals through sharing their statuses, posting their opinions, experiences, suggestions, etc on online social networks (OSNs). Exploring and analyzing this data has a great potential to enable deep and fine-grained insights into the behavior, emotions, and language of individuals in a society. This proposed dissertation focuses on utilizing these online social footprints to research two main threads – 1) Analysis: to study the behavior of individuals online (content analysis) and 2) Synthesis: to build models that influence the behavior of individuals offline (incomplete action models for decision-making).

A large percentage of posts shared online are in an unrestricted natural language format that is meant for human consumption. One of the demanding problems in this context is to leverage and develop approaches to automatically extract important insights from this incessant massive data pool. Efforts in this direction emphasize mining or extracting the wealth of latent information in the data from multiple OSNs independently. The first thread of this dissertation focuses on analytics to investigate the differentiated content-sharing behavior of individuals. The second thread of this dissertation attempts to build decision-making systems using social media data.

The results of the proposed dissertation emphasize the importance of considering multiple data types while interpreting the content shared on OSNs. They highlight the unique ways in which the data and the extracted patterns from text-based platforms or visual-based platforms complement and contrast in terms of their content. The proposed research demonstrated that, in many ways, the results obtained by focusing on either only text or only visual elements of content shared online could lead to biased insights. On the other hand, it also shows the power of a sequential set of patterns that have some sort of precedence relationships and collaboration between humans and automated planners.
ContributorsManikonda, Lydia (Author) / Kambhampati, Subbarao (Thesis advisor) / Liu, Huan (Committee member) / Li, Baoxin (Committee member) / De Choudhury, Munmun (Committee member) / Kamar, Ece (Committee member) / Arizona State University (Publisher)
Created2019
158566-Thumbnail Image.png
Description
Social media has become an important means of user-centered information sharing and communications in a gamut of domains, including news consumption, entertainment, marketing, public relations, and many more. The low cost, easy access, and rapid dissemination of information on social media draws a large audience but also exacerbate the wide

Social media has become an important means of user-centered information sharing and communications in a gamut of domains, including news consumption, entertainment, marketing, public relations, and many more. The low cost, easy access, and rapid dissemination of information on social media draws a large audience but also exacerbate the wide propagation of disinformation including fake news, i.e., news with intentionally false information. Disinformation on social media is growing fast in volume and can have detrimental societal effects. Despite the importance of this problem, our understanding of disinformation in social media is still limited. Recent advancements of computational approaches on detecting disinformation and fake news have shown some early promising results. Novel challenges are still abundant due to its complexity, diversity, dynamics, multi-modality, and costs of fact-checking or annotation.

Social media data opens the door to interdisciplinary research and allows one to collectively study large-scale human behaviors otherwise impossible. For example, user engagements over information such as news articles, including posting about, commenting on, or recommending the news on social media, contain abundant rich information. Since social media data is big, incomplete, noisy, unstructured, with abundant social relations, solely relying on user engagements can be sensitive to noisy user feedback. To alleviate the problem of limited labeled data, it is important to combine contents and this new (but weak) type of information as supervision signals, i.e., weak social supervision, to advance fake news detection.

The goal of this dissertation is to understand disinformation by proposing and exploiting weak social supervision for learning with little labeled data and effectively detect disinformation via innovative research and novel computational methods. In particular, I investigate learning with weak social supervision for understanding disinformation with the following computational tasks: bringing the heterogeneous social context as auxiliary information for effective fake news detection; discovering explanations of fake news from social media for explainable fake news detection; modeling multi-source of weak social supervision for early fake news detection; and transferring knowledge across domains with adversarial machine learning for cross-domain fake news detection. The findings of the dissertation significantly expand the boundaries of disinformation research and establish a novel paradigm of learning with weak social supervision that has important implications in broad applications in social media.
ContributorsShu, Kai (Author) / Liu, Huan (Thesis advisor) / Bernard, H. Russell (Committee member) / Maciejewski, Ross (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2020