Matching Items (8)
Filtering by

Clear all filters

Description
Filtration for microfluidic sample-collection devices is desirable for sample selection, concentration, preprocessing, and downstream manipulation, but microfabricating the required sub-micrometer filtration structure is an elaborate process. This thesis presents a simple method to fabricate polydimethylsiloxane (PDMS) devices with an integrated membrane filter that will sample, lyse, and extract the DNA

Filtration for microfluidic sample-collection devices is desirable for sample selection, concentration, preprocessing, and downstream manipulation, but microfabricating the required sub-micrometer filtration structure is an elaborate process. This thesis presents a simple method to fabricate polydimethylsiloxane (PDMS) devices with an integrated membrane filter that will sample, lyse, and extract the DNA from microorganisms in aqueous environments. An off-the-shelf membrane filter disc was embedded in a PDMS layer and sequentially bound with other PDMS channel layers. No leakage was observed during filtration. This device was validated by concentrating a large amount of cyanobacterium Synechocystis in simulated sample water with consistent performance across devices. After accumulating sufficient biomass on the filter, a sequential electrochemical lysing process was performed by applying 5VDC across the filter. This device was further evaluated by delivering several samples of differing concentrations of cyanobacterium Synechocystis then quantifying the DNA using real-time PCR. Lastly, an environmental sample was run through the device and the amount of photosynthetic microorganisms present in the water was determined. The major breakthroughs in this design are low energy demand, cheap materials, simple design, straightforward fabrication, and robust performance, together enabling wide-utility of similar chip-based devices for field-deployable operations in environmental micro-biotechnology.
ContributorsLecluse, Aurelie (Author) / Meldrum, Deirdre (Thesis advisor) / Chao, Joseph (Thesis advisor) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2011
150594-Thumbnail Image.png
Description
As engineered nanomaterials (NMs) become used in industry and commerce their loading to sewage will increase. However, the fate of widely used NMs in wastewater treatment plants (WWTPs) remains poorly understood. In this research, sequencing batch reactors (SBRs) were operated with hydraulic (HRT) and sludge (SRT) retention times representative of

As engineered nanomaterials (NMs) become used in industry and commerce their loading to sewage will increase. However, the fate of widely used NMs in wastewater treatment plants (WWTPs) remains poorly understood. In this research, sequencing batch reactors (SBRs) were operated with hydraulic (HRT) and sludge (SRT) retention times representative of full-scale biological WWTPs for several weeks. NM loadings at the higher range of expected environmental concentrations were selected. To achieve the pseudo-equilibrium state concentration of NMs in biomass, SBR experiments needed to operate for more than three times the SRT value, approximately 18 days. Under the conditions tested, NMs had negligible effects on ability of the wastewater bacteria to biodegrade organic material, as measured by chemical oxygen demand (COD). NM mass balance closure was achieved by measuring NMs in liquid effluent and waste biosolids. All NMs were well removed at the typical biomass concentration (1~2 gSS/L). However, carboxy-terminated polymer coated silver nanoparticles (fn-Ag) were removed less effectively (88% removal) than hydroxylated fullerenes (fullerols; >90% removal), nano TiO2 (>95% removal) or aqueous fullerenes (nC60; >95% removal). Although most NMs did not settle out of the feed solution without bacteria present, approximately 65% of the titanium dioxide was removed even in the absence of biomass simply due to self-aggregation and settling. Experiments conducted over 4 months with daily loadings of nC60 showed that nC60 removal from solution depends on the biomass concentration. Under conditions representative of most suspended growth biological WWTPs (e.g., activated sludge), most of the NMs will accumulate in biosolids rather than in liquid effluent discharged to surface waters. Significant fractions of fn-Ag were associated with colloidal material which suggests that efficient particle separation processes (sedimentation or filtration) could further improve removal of NM from effluent. As most NMs appear to accumulate in biosolids, future research should examine the fate of NMs during disposal of WWTP biosolids, which may occur through composting or anaerobic digestion and/or land application, incineration, or landfill disposal.
ContributorsWang, Yifei (Author) / Westerhoff, Paul (Thesis advisor) / Krajmalnik-Brown, Rosa (Committee member) / Rittmann, Bruce (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2012
153798-Thumbnail Image.png
Description
Nanotechnology is becoming increasingly present in our environment. Engineered nanoparticles (ENPs), defined as objects that measure less than 100 nanometers in at least one dimension, are being integrated into commercial products because of their small size, increased surface area, and quantum effects. These special properties have made ENPs antimicrobial agents

Nanotechnology is becoming increasingly present in our environment. Engineered nanoparticles (ENPs), defined as objects that measure less than 100 nanometers in at least one dimension, are being integrated into commercial products because of their small size, increased surface area, and quantum effects. These special properties have made ENPs antimicrobial agents in clothing and plastics, among other applications in industries such as pharmaceuticals, renewable energy, and prosthetics. This thesis incorporates investigations into both application of nanoparticles into polymers as well as implications of nanoparticle release into the environment. First, the integration of ENPs into polymer fibers via electrospinning was explored. Electrospinning uses an external electric field applied to a polymer solution to produce continuous fibers with large surface area and small volume, a quality which makes the fibers ideal for water and air purification purposes. Indium oxide and titanium dioxide nanoparticles were embedded in polyvinylpyrrolidone and polystyrene. Viscosity, critical voltage, and diameter of electrospun fibers were analyzed in order to determine the effects of nanoparticle integration into the polymers. Critical voltage and viscosity of solution increased at 5 wt% ENP concentration. Fiber morphology was not found to change significantly as a direct effect of ENP addition, but as an effect of increased viscosity and surface tension. These results indicate the possibility for seamless integration of ENPs into electrospun polymers. Implications of ENP release were investigated using phase distribution functional assays of nanoscale silver and silver sulfide, as well as photolysis experiments of nanoscale titanium dioxide to quantify hydroxyl radical production. Functional assays are a means of screening the relevant importance of multiple processes in the environmental fate and transport of ENPs. Four functional assays – water-soil, water-octanol, water-wastewater sludge and water-surfactant – were used to compare concentrations of silver sulfide ENPs (Ag2S-NP) and silver ENPs (AgNP) capped by four different coatings. The functional assays resulted in reproducible experiments which clearly showed variations between nanoparticle phase distributions; the findings may be a product of the effects of the different coatings of the ENPs used. In addition to phase distribution experiments, the production of hydroxyl radical (HO•) by nanoscale titanium dioxide (TiO2) under simulated solar irradiation was investigated. Hydroxyl radical are a short-lived, highly reactive species produced by solar radiation in aquatic environments that affect ecosystem function and degrades pollutants. HO• is produced by photolysis of TiO2 and nitrate (NO3-); these two species were used in photolysis experiments to compare the relative loads of hydroxyl radical which nanoscale TiO2 may add upon release to natural waters. Para-chlorobenzoic acid (pCBA) was used as a probe. Measured rates of pCBA oxidation in the presence of various concentrations of TiO2 nanoparticles and NO3- were utilized to calculate pseudo first order rate constants. Results indicate that, on a mass concentration basis in water, TiO2 produces hydroxyl radical steady state concentrations at 1.3 times more than the equivalent amount of NO3-; however, TiO2 concentrations are generally less than one order of magnitude lower than concentrations of NO3-. This has implications for natural waterways as the amount of nanoscale TiO2 released from consumer products into natural waterways increases in proportion to its use.
ContributorsHoogesteijn von Reitzenstein, Natalia (Author) / Westerhoff, Paul (Thesis advisor) / Herckes, Pierre (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2015
154016-Thumbnail Image.png
Description
Carbon nanomaterials have caught tremendous attention in the last few decades due to their unique physical and chemical properties. Tremendous effort has been made to develop new synthesis techniques for carbon nanomaterials and investigate their properties for different applications. In this work, carbon nanospheres (CNSs), carbon foams (CF), and single-walled

Carbon nanomaterials have caught tremendous attention in the last few decades due to their unique physical and chemical properties. Tremendous effort has been made to develop new synthesis techniques for carbon nanomaterials and investigate their properties for different applications. In this work, carbon nanospheres (CNSs), carbon foams (CF), and single-walled carbon nanotubes (SWNTs) were studied for various applications, including water treatment, energy storage, actuators, and sensors.

A facile spray pyrolysis synthesis technique was developed to synthesize individual CNSs with specific surface area (SSA) up to 1106 m2/g. The hollow CNSs showed adsorption of up to 300 mg rhodamine B dye per gram carbon, which is more than 15 times higher than that observed for conventional carbon black. They were also evaluated as adsorbents for removal of arsenate and selenate from water and displayed good binding to both species, outperforming commercial activated carbons for arsenate removal in pH > 8. When evaluated as supercapacitor electrode materials, specific capacitances of up to 112 F/g at a current density of 0.1 A/g were observed. When used as Li-ion battery anode materials, the CNSs achieved a discharge capacity of 270 mAh/g at a current density of 372 mA/g (1C), which is 4-fold higher than that of commercial graphite anode.

Carbon foams were synthesized using direct pyrolysis and had SSA up to 2340 m2/g. When used as supercapacitor electrode materials, a specific capacitance up to 280 F/g was achieved at current density of 0.1 A/g and remained as high as 207 F/g, even at a high current density of 10 A/g.

A printed walking robot was made from common plastic films and coatings of SWNTs. The solid-state thermal bimorph actuators were multifunctional energy transducers powered by heat, light, or electricity. The actuators were also investigated for photo/thermal detection. Electrochemical actuators based on MnO2 were also studied for potential underwater applications.

SWNTs were also used to fabricate printable electrodes for trace Cr(VI) detection, which displayed sensitivity up to 500 nA/ppb for Cr(VI). The limit of detection was shown to be as low as 5 ppb. A flow detection system based on CNT/printed electrodes was also demonstrated.
ContributorsWang, Chengwei, Ph.D (Author) / Chan, Candace K. (Thesis advisor) / Tongay, Sefaattin (Committee member) / Wang, Qing Hua (Committee member) / Seo, Dong (Committee member) / Arizona State University (Publisher)
Created2015
156705-Thumbnail Image.png
Description
Flame retardants (FRs) are applied to variety of consumer products such as textiles and polymers for fire prevention and fire safety. Substantial research is ongoing to replace traditional FRs with alternative materials that are less toxic, present higher flame retardancy and result in lower overall exposure as there are potential

Flame retardants (FRs) are applied to variety of consumer products such as textiles and polymers for fire prevention and fire safety. Substantial research is ongoing to replace traditional FRs with alternative materials that are less toxic, present higher flame retardancy and result in lower overall exposure as there are potential health concerns in case of exposure to popular FRs. Carbonaceous nanomaterials (CNMs) such as carbon nanotubes (CNTs) and graphene oxide (GO) have been studied and applied to polymer composites and electronics extensively due to their remarkable properties. Hence CNMs are considered as potential alternative materials that present high flame retardancy. In this research, different kinds of CNMs coatings on polyester fabric are produced and evaluated for their use as flame retardants. To monitor the mass loading of CNMs coated on the fabric, a two-step analytical method for quantifying CNMs embedded in polymer composites was developed. This method consisted of polymer dissolution process using organic solvents followed by subsequent programmed thermal analysis (PTA). This quantification technique was applicable to CNTs with and without high metal impurities in a broad range of polymers. Various types of CNMs were coated on polyester fabric and the efficacy of coatings as flame retardant was evaluated. The oxygen content of CNMs emerged as a critical parameter impacting flame retardancy with higher oxygen content resulting in less FR efficacy. The most performant nanomaterials, multi-walled carbon nanotubes (MWCNTs) and amine functionalized multi-walled carbon nantoubes (NH2-MWCNT) showed similar FR properties to current flame retardants with low mass loading (0.18 g/m2) and hence are promising alternatives that warrant further investigation. Chemical/physical modification of MWCNTs was conducted to produce well-dispersed MWCNT solutions without involving oxygen for uniform FR coating. The MWCNTs coating was studied to evaluate the durability of the coating and the impact on the efficacy during use phase by conducting mechanical abrasion and washing test. Approximately 50% and 40% of MWCNTs were released from 1 set of mechanical abrasion and washing test respectively. The losses during simulated usage impacted the flame retardancy negatively.
ContributorsNosaka, Takayuki (Author) / Herckes, Pierre (Thesis advisor) / Westerhoff, Paul (Committee member) / Wang, Qing Hua (Committee member) / Arizona State University (Publisher)
Created2018
156666-Thumbnail Image.png
Description
Layer structured two dimensional (2D) semiconductors have gained much interest due to their intriguing optical and electronic properties induced by the unique van der Waals bonding between layers. The extraordinary success for graphene and transition metal dichalcogenides (TMDCs) has triggered a constant search for novel 2D semiconductors beyond them. Gallium

Layer structured two dimensional (2D) semiconductors have gained much interest due to their intriguing optical and electronic properties induced by the unique van der Waals bonding between layers. The extraordinary success for graphene and transition metal dichalcogenides (TMDCs) has triggered a constant search for novel 2D semiconductors beyond them. Gallium chalcogenides, belonging to the group III-VI compounds, are a new class of 2D semiconductors that carry a variety of interesting properties including wide spectrum coverage of their bandgaps and thus are promising candidates for next generation electronic and optoelectronic devices. Pushing these materials toward applications requires more controllable synthesis methods and facile routes for engineering their properties on demand.

In this dissertation, vapor phase transport is used to synthesize layer structured gallium chalcogenide nanomaterials with highly controlled structure, morphology and properties, with particular emphasis on GaSe, GaTe and GaSeTe alloys. Multiple routes are used to manipulate the physical properties of these materials including strain engineering, defect engineering and phase engineering. First, 2D GaSe with controlled morphologies is synthesized on Si(111) substrates and the bandgap is significantly reduced from 2 eV to 1.7 eV due to lateral tensile strain. By applying vertical compressive strain using a diamond anvil cell, the band gap can be further reduced to 1.4 eV. Next, pseudo-1D GaTe nanomaterials with a monoclinic structure are synthesized on various substrates. The product exhibits highly anisotropic atomic structure and properties characterized by high-resolution transmission electron microscopy and angle resolved Raman and photoluminescence (PL) spectroscopy. Multiple sharp PL emissions below the bandgap are found due to defects localized at the edges and grain boundaries. Finally, layer structured GaSe1-xTex alloys across the full composition range are synthesized on GaAs(111) substrates. Results show that GaAs(111) substrate plays an essential role in stabilizing the metastable single-phase alloys within the miscibility gaps. A hexagonal to monoclinic phase crossover is observed as the Te content increases. The phase crossover features coexistence of both phases and isotropic to anisotropic structural transition.

Overall, this work provides insights into the controlled synthesis of gallium chalcogenides and opens up new opportunities towards optoelectronic applications that require tunable material properties.
ContributorsCai, Hui, Ph.D (Author) / Tongay, Sefaattin (Thesis advisor) / Dwyer, Christian (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2018
153784-Thumbnail Image.png
Description
The production and applications of engineered nanomaterials (ENM) has increased rapidly in the last decade, with release of ENM to the environment through the sewer system and municipal wastewater treatment plants (WWTPs) being of concern. Currently, the literature on ENM release from WWTPs and removal of ENM by WWTPs is

The production and applications of engineered nanomaterials (ENM) has increased rapidly in the last decade, with release of ENM to the environment through the sewer system and municipal wastewater treatment plants (WWTPs) being of concern. Currently, the literature on ENM release from WWTPs and removal of ENM by WWTPs is insufficient and disorganized. There is little quantitative data on the removal of multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO), or few-layer graphene (FLG), from wastewater onto biomass. The removal of pristine and oxidized MWCNTs (O-MWCNTs), graphene oxide (GO), few-layer graphene (FLG) and Tween™ 20-coated Ag ENM by the interaction with biomass were determined by programmable thermal analysis (PTA) and UV-Vis spectrophotometry. The removal of pristine and O-MWCNTs was 96% from the water phase via aggregation and 30-min settling in presence or absence of biomass with an initial MWCNT concentration of 25 mg/L. The removal of 25 mg/L GO was 65% with biomass concentration at or above 1,000 mg TSS/L. The removal of 1 mg/L FLG was 16% with 50 mg TSS/L. The removal of Tween™ 20 Ag ENM with concentration from 0.97 mg/L to 2.6 mg/L was from 11% to 92% with biomass concentration of 500 mg TSS/L to 3,000 mg TSS/L, respectively.

A database of ENM removal by biomass was established by analyzing data from published papers, and non-linear solid-liquid distribution functions were built into the database. A conventional activated sludge (CAS) model was built based on a membrane bioreactor (MBR) model from a previous paper. An iterative numeric approach was adapted to the CAS model to calculate the result of non-linear adsorption of ENM by biomass in the CAS process. Kinetic studies of the CAS model showed the model performance changed mostly in the first 10 days after changing influent chemical oxygen demand (COD) concentration, and reached a steady state after 11 days. Over 60% of ENMs which have distribution coefficients in the database reached higher than 50% removal by the CAS model under general operational conditions. This result suggests that traditional WWTP which include the CAS process can remove many known types of ENMs in certain degree.
ContributorsYu, Zhicheng (Author) / Westerhoff, Paul (Thesis advisor) / Rittmann, Bruce (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2015
157671-Thumbnail Image.png
Description
More recently there have been a tremendous advancement in theoretical studies showing remarkable properties that could be exploited from transition metal dichalcogenide (TMDC) Janus crystals through various applications. These Janus crystals are having a proven intrinsic electrical field due to breaking of out-of-plane inversion symmetry in a conventional TMDC when

More recently there have been a tremendous advancement in theoretical studies showing remarkable properties that could be exploited from transition metal dichalcogenide (TMDC) Janus crystals through various applications. These Janus crystals are having a proven intrinsic electrical field due to breaking of out-of-plane inversion symmetry in a conventional TMDC when one of the chalcogenides atomic layer is being completely replaced by a layer of different chalcogen element. However, due to lack of accurate processing control at nanometer scales, key for creating a highly crystalline Janus structure has not yet been familiarized. Thus, experimental characterization and implication of these Janus crystals are still in a state of stagnation. This work presents a new advanced methodology that could prove to be highly efficient and effective for selective replacement of top layer atomic sites at room temperature conditions.

This is specifically more focused on proving an easy repeatability for replacement of top atomic layer chalcogenide from a parent structure of already grown TMDC monolayer (via CVD) by a post plasma processing technique. Though this developed technique is not limited to only chalcogen atom replacement but can be extended to any type of surface functionalization requirements.

Basic characterization has been performed on the Janus crystal of SeMoS and SeWS where, creation and characterization of SeWS has been done for the very first time, evidencing a repeatable nature of the developed methodology.
ContributorsTrivedi, Dipesh (Author) / Tongay, Sefaattin (Thesis advisor) / Green, Matthew (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2019