Matching Items (4)
Filtering by

Clear all filters

153032-Thumbnail Image.png
Description
Most existing security decisions for both defending and attacking are made based on some deterministic approaches that only give binary answers. Even though these approaches can achieve low false positive rate for decision making, they have high false negative rates due to the lack of accommodations to new attack methods

Most existing security decisions for both defending and attacking are made based on some deterministic approaches that only give binary answers. Even though these approaches can achieve low false positive rate for decision making, they have high false negative rates due to the lack of accommodations to new attack methods and defense techniques. In this dissertation, I study how to discover and use patterns with uncertainty and randomness to counter security challenges. By extracting and modeling patterns in security events, I am able to handle previously unknown security events with quantified confidence, rather than simply making binary decisions. In particular, I cope with the following four real-world security challenges by modeling and analyzing with pattern-based approaches: 1) How to detect and attribute previously unknown shellcode? I propose instruction sequence abstraction that extracts coarse-grained patterns from an instruction sequence and use Markov chain-based model and support vector machines to detect and attribute shellcode; 2) How to safely mitigate routing attacks in mobile ad hoc networks? I identify routing table change patterns caused by attacks, propose an extended Dempster-Shafer theory to measure the risk of such changes, and use a risk-aware response mechanism to mitigate routing attacks; 3) How to model, understand, and guess human-chosen picture passwords? I analyze collected human-chosen picture passwords, propose selection function that models patterns in password selection, and design two algorithms to optimize password guessing paths; and 4) How to identify influential figures and events in underground social networks? I analyze collected underground social network data, identify user interaction patterns, and propose a suite of measures for systematically discovering and mining adversarial evidence. By solving these four problems, I demonstrate that discovering and using patterns could help deal with challenges in computer security, network security, human-computer interaction security, and social network security.
ContributorsZhao, Ziming (Author) / Ahn, Gail-Joon (Thesis advisor) / Yau, Stephen S. (Committee member) / Huang, Dijiang (Committee member) / Santanam, Raghu (Committee member) / Arizona State University (Publisher)
Created2014
150382-Thumbnail Image.png
Description
This thesis proposed a novel approach to establish the trust model in a social network scenario based on users' emails. Email is one of the most important social connections nowadays. By analyzing email exchange activities among users, a social network trust model can be established to judge the trust rate

This thesis proposed a novel approach to establish the trust model in a social network scenario based on users' emails. Email is one of the most important social connections nowadays. By analyzing email exchange activities among users, a social network trust model can be established to judge the trust rate between each two users. The whole trust checking process is divided into two steps: local checking and remote checking. Local checking directly contacts the email server to calculate the trust rate based on user's own email communication history. Remote checking is a distributed computing process to get help from user's social network friends and built the trust rate together. The email-based trust model is built upon a cloud computing framework called MobiCloud. Inside MobiCloud, each user occupies a virtual machine which can directly communicate with others. Based on this feature, the distributed trust model is implemented as a combination of local analysis and remote analysis in the cloud. Experiment results show that the trust evaluation model can give accurate trust rate even in a small scale social network which does not have lots of social connections. With this trust model, the security in both social network services and email communication could be improved.
ContributorsZhong, Yunji (Author) / Huang, Dijiang (Thesis advisor) / Dasgupta, Partha (Committee member) / Syrotiuk, Violet (Committee member) / Arizona State University (Publisher)
Created2011
154704-Thumbnail Image.png
Description
E-Mail header injection vulnerability is a class of vulnerability that can occur in web applications that use user input to construct e-mail messages. E-Mail injection is possible when the mailing script fails to check for the presence of e-mail headers in user input (either form fields or URL parameters). The

E-Mail header injection vulnerability is a class of vulnerability that can occur in web applications that use user input to construct e-mail messages. E-Mail injection is possible when the mailing script fails to check for the presence of e-mail headers in user input (either form fields or URL parameters). The vulnerability exists in the reference implementation of the built-in “mail” functionality in popular languages like PHP, Java, Python, and Ruby. With the proper injection string, this vulnerability can be exploited to inject additional headers and/or modify existing headers in an e-mail message, allowing an attacker to completely alter the content of the e-mail.

This thesis develops a scalable mechanism to automatically detect E-Mail Header Injection vulnerability and uses this mechanism to quantify the prevalence of E- Mail Header Injection vulnerabilities on the Internet. Using a black-box testing approach, the system crawled 21,675,680 URLs to find URLs which contained form fields. 6,794,917 such forms were found by the system, of which 1,132,157 forms contained e-mail fields. The system used this data feed to discern the forms that could be fuzzed with malicious payloads. Amongst the 934,016 forms tested, 52,724 forms were found to be injectable with more malicious payloads. The system tested 46,156 of these and was able to find 496 vulnerable URLs across 222 domains, which proves that the threat is widespread and deserves future research attention.
ContributorsChandramouli, Sai Prashanth (Author) / Doupe, Adam (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Zhao, Ziming (Committee member) / Arizona State University (Publisher)
Created2016
155054-Thumbnail Image.png
Description
Software-Defined Networking (SDN) is an emerging network paradigm that decouples the control plane from the data plane, which allows network administrators to consolidate common network services into a centralized module named SDN controller. Applications’ policies are transformed into standardized network rules in the data plane via SDN controller. Even though

Software-Defined Networking (SDN) is an emerging network paradigm that decouples the control plane from the data plane, which allows network administrators to consolidate common network services into a centralized module named SDN controller. Applications’ policies are transformed into standardized network rules in the data plane via SDN controller. Even though this centralization brings a great flexibility and programmability to the network, network rules generated by SDN applications cannot be trusted because there may exist malicious SDN applications, and insecure network flows can be made due to complex relations across network rules. In this dissertation, I investigate how to identify and resolve these security violations in SDN caused by the combination of network rules and applications’ policies. To this end, I propose a systematic policy management framework that better protects SDN itself and hardens existing network defense mechanisms using SDN.

More specifically, I discuss the following four security challenges in this dissertation: (1) In SDN, generating reliable network rules is challenging because SDN applications cannot be trusted and have complicated dependencies each other. To address this problem, I analyze applications’ policies and remove those dependencies by applying grid-based policy decomposition mechanism; (2) One network rule could accidentally affect others (or by malicious users), which lead to creating of indirect security violations. I build systematic and automated tools that analyze network rules in the data plane to detect a wide range of security violations and resolve them in an automated fashion; (3) A fundamental limitation of current SDN protocol (OpenFlow) is a lack of statefulness, which is extremely important to several security applications such as stateful firewall. To bring statelessness to SDN-based environment, I come up with an innovative stateful monitoring scheme by extending existing OpenFlow specifications; (4) Existing honeynet architecture is suffering from its limited functionalities of ’data control’ and ’data capture’. To address this challenge, I design and implement an innovative next generation SDN-based honeynet architecture.
ContributorsHan, Wonkyu (Author) / Ahn, Gail-Joon (Thesis advisor) / Zhao, Ziming (Thesis advisor) / Doupe, Adam (Committee member) / Huang, Dijiang (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2016