Matching Items (12)
Filtering by

Clear all filters

153032-Thumbnail Image.png
Description
Most existing security decisions for both defending and attacking are made based on some deterministic approaches that only give binary answers. Even though these approaches can achieve low false positive rate for decision making, they have high false negative rates due to the lack of accommodations to new attack methods

Most existing security decisions for both defending and attacking are made based on some deterministic approaches that only give binary answers. Even though these approaches can achieve low false positive rate for decision making, they have high false negative rates due to the lack of accommodations to new attack methods and defense techniques. In this dissertation, I study how to discover and use patterns with uncertainty and randomness to counter security challenges. By extracting and modeling patterns in security events, I am able to handle previously unknown security events with quantified confidence, rather than simply making binary decisions. In particular, I cope with the following four real-world security challenges by modeling and analyzing with pattern-based approaches: 1) How to detect and attribute previously unknown shellcode? I propose instruction sequence abstraction that extracts coarse-grained patterns from an instruction sequence and use Markov chain-based model and support vector machines to detect and attribute shellcode; 2) How to safely mitigate routing attacks in mobile ad hoc networks? I identify routing table change patterns caused by attacks, propose an extended Dempster-Shafer theory to measure the risk of such changes, and use a risk-aware response mechanism to mitigate routing attacks; 3) How to model, understand, and guess human-chosen picture passwords? I analyze collected human-chosen picture passwords, propose selection function that models patterns in password selection, and design two algorithms to optimize password guessing paths; and 4) How to identify influential figures and events in underground social networks? I analyze collected underground social network data, identify user interaction patterns, and propose a suite of measures for systematically discovering and mining adversarial evidence. By solving these four problems, I demonstrate that discovering and using patterns could help deal with challenges in computer security, network security, human-computer interaction security, and social network security.
ContributorsZhao, Ziming (Author) / Ahn, Gail-Joon (Thesis advisor) / Yau, Stephen S. (Committee member) / Huang, Dijiang (Committee member) / Santanam, Raghu (Committee member) / Arizona State University (Publisher)
Created2014
153041-Thumbnail Image.png
Description
A firewall is a necessary component for network security and just like any regular equipment it requires maintenance. To keep up with changing cyber security trends and threats, firewall rules are modified frequently. Over time such modifications increase the complexity, size and verbosity of firewall rules. As the rule set

A firewall is a necessary component for network security and just like any regular equipment it requires maintenance. To keep up with changing cyber security trends and threats, firewall rules are modified frequently. Over time such modifications increase the complexity, size and verbosity of firewall rules. As the rule set grows in size, adding and modifying rule becomes a tedious task. This discourages network administrators to review the work done by previous administrators before and after applying any changes. As a result the quality and efficiency of the firewall goes down.

Modification and addition of rules without knowledge of previous rules creates anomalies like shadowing and rule redundancy. Anomalous rule sets not only limit the efficiency of the firewall but in some cases create a hole in the perimeter security. Detection of anomalies has been studied for a long time and some well established procedures have been implemented and tested. But they all have a common problem of visualizing the results. When it comes to visualization of firewall anomalies, the results do not fit in traditional matrix, tree or sunburst representations.

This research targets the anomaly detection and visualization problem. It analyzes and represents firewall rule anomalies in innovative ways such as hive plots and dynamic slices. Such graphical representations of rule anomalies are useful in understanding the state of a firewall. It also helps network administrators in finding and fixing the anomalous rules.
ContributorsKhatkar, Pankaj Kumar (Author) / Huang, Dijiang (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Syrotiuk, Violet R. (Committee member) / Arizona State University (Publisher)
Created2014
149803-Thumbnail Image.png
Description
With the advent of technologies such as web services, service oriented architecture and cloud computing, modern organizations have to deal with policies such as Firewall policies to secure the networks, XACML (eXtensible Access Control Markup Language) policies for controlling the access to critical information as well as resources. Management of

With the advent of technologies such as web services, service oriented architecture and cloud computing, modern organizations have to deal with policies such as Firewall policies to secure the networks, XACML (eXtensible Access Control Markup Language) policies for controlling the access to critical information as well as resources. Management of these policies is an extremely important task in order to avoid unintended security leakages via illegal accesses, while maintaining proper access to services for legitimate users. Managing and maintaining access control policies manually over long period of time is an error prone task due to their inherent complex nature. Existing tools and mechanisms for policy management use different approaches for different types of policies. This research thesis represents a generic framework to provide an unified approach for policy analysis and management of different types of policies. Generic approach captures the common semantics and structure of different access control policies with the notion of policy ontology. Policy ontology representation is then utilized for effectively analyzing and managing the policies. This thesis also discusses a proof-of-concept implementation of the proposed generic framework and demonstrates how efficiently this unified approach can be used for analysis and management of different types of access control policies.
ContributorsKulkarni, Ketan (Author) / Ahn, Gail-Joon (Thesis advisor) / Yau, Stephen S. (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2011
149858-Thumbnail Image.png
Description
This dissertation is focused on building scalable Attribute Based Security Systems (ABSS), including efficient and privacy-preserving attribute based encryption schemes and applications to group communications and cloud computing. First of all, a Constant Ciphertext Policy Attribute Based Encryption (CCP-ABE) is proposed. Existing Attribute Based Encryption (ABE) schemes usually incur large,

This dissertation is focused on building scalable Attribute Based Security Systems (ABSS), including efficient and privacy-preserving attribute based encryption schemes and applications to group communications and cloud computing. First of all, a Constant Ciphertext Policy Attribute Based Encryption (CCP-ABE) is proposed. Existing Attribute Based Encryption (ABE) schemes usually incur large, linearly increasing ciphertext. The proposed CCP-ABE dramatically reduces the ciphertext to small, constant size. This is the first existing ABE scheme that achieves constant ciphertext size. Also, the proposed CCP-ABE scheme is fully collusion-resistant such that users can not combine their attributes to elevate their decryption capacity. Next step, efficient ABE schemes are applied to construct optimal group communication schemes and broadcast encryption schemes. An attribute based Optimal Group Key (OGK) management scheme that attains communication-storage optimality without collusion vulnerability is presented. Then, a novel broadcast encryption model: Attribute Based Broadcast Encryption (ABBE) is introduced, which exploits the many-to-many nature of attributes to dramatically reduce the storage complexity from linear to logarithm and enable expressive attribute based access policies. The privacy issues are also considered and addressed in ABSS. Firstly, a hidden policy based ABE schemes is proposed to protect receivers' privacy by hiding the access policy. Secondly,a new concept: Gradual Identity Exposure (GIE) is introduced to address the restrictions of hidden policy based ABE schemes. GIE's approach is to reveal the receivers' information gradually by allowing ciphertext recipients to decrypt the message using their possessed attributes one-by-one. If the receiver does not possess one attribute in this procedure, the rest of attributes are still hidden. Compared to hidden-policy based solutions, GIE provides significant performance improvement in terms of reducing both computation and communication overhead. Last but not least, ABSS are incorporated into the mobile cloud computing scenarios. In the proposed secure mobile cloud data management framework, the light weight mobile devices can securely outsource expensive ABE operations and data storage to untrusted cloud service providers. The reported scheme includes two components: (1) a Cloud-Assisted Attribute-Based Encryption/Decryption (CA-ABE) scheme and (2) An Attribute-Based Data Storage (ABDS) scheme that achieves information theoretical optimality.
ContributorsZhou, Zhibin (Author) / Huang, Dijiang (Thesis advisor) / Yau, Sik-Sang (Committee member) / Ahn, Gail-Joon (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2011
150148-Thumbnail Image.png
Description
In order to catch the smartest criminals in the world, digital forensics examiners need a means of collaborating and sharing information with each other and outside experts that is not prohibitively difficult. However, standard operating procedures and the rules of evidence generally disallow the use of the collaboration software and

In order to catch the smartest criminals in the world, digital forensics examiners need a means of collaborating and sharing information with each other and outside experts that is not prohibitively difficult. However, standard operating procedures and the rules of evidence generally disallow the use of the collaboration software and techniques that are currently available because they do not fully adhere to the dictated procedures for the handling, analysis, and disclosure of items relating to cases. The aim of this work is to conceive and design a framework that provides a completely new architecture that 1) can perform fundamental functions that are common and necessary to forensic analyses, and 2) is structured such that it is possible to include collaboration-facilitating components without changing the way users interact with the system sans collaboration. This framework is called the Collaborative Forensic Framework (CUFF). CUFF is constructed from four main components: Cuff Link, Storage, Web Interface, and Analysis Block. With the Cuff Link acting as a mediator between components, CUFF is flexible in both the method of deployment and the technologies used in implementation. The details of a realization of CUFF are given, which uses a combination of Java, the Google Web Toolkit, Django with Apache for a RESTful web service, and an Ubuntu Enterprise Cloud using Eucalyptus. The functionality of CUFF's components is demonstrated by the integration of an acquisition script designed for Android OS-based mobile devices that use the YAFFS2 file system. While this work has obvious application to examination labs which work under the mandate of judicial or investigative bodies, security officers at any organization would benefit from the improved ability to cooperate in electronic discovery efforts and internal investigations.
ContributorsMabey, Michael Kent (Author) / Ahn, Gail-Joon (Thesis advisor) / Yau, Stephen S. (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2011
153909-Thumbnail Image.png
Description
Cloud computing is known as a new and powerful computing paradigm. This new generation of network computing model delivers both software and hardware as on-demand resources and various services over the Internet. However, the security concerns prevent users from adopting the cloud-based solutions to fulfill the IT requirement for many

Cloud computing is known as a new and powerful computing paradigm. This new generation of network computing model delivers both software and hardware as on-demand resources and various services over the Internet. However, the security concerns prevent users from adopting the cloud-based solutions to fulfill the IT requirement for many business critical computing. Due to the resource-sharing and multi-tenant nature of cloud-based solutions, cloud security is especially the most concern in the Infrastructure as a Service (IaaS). It has been attracting a lot of research and development effort in the past few years.

Virtualization is the main technology of cloud computing to enable multi-tenancy.

Computing power, storage, and network are all virtualizable to be shared in an IaaS system. This important technology makes abstract infrastructure and resources available to users as isolated virtual machines (VMs) and virtual networks (VNs). However, it also increases vulnerabilities and possible attack surfaces in the system, since all users in a cloud share these resources with others or even the attackers. The promising protection mechanism is required to ensure strong isolation, mediated sharing, and secure communications between VMs. Technologies for detecting anomalous traffic and protecting normal traffic in VNs are also needed. Therefore, how to secure and protect the private traffic in VNs and how to prevent the malicious traffic from shared resources are major security research challenges in a cloud system.

This dissertation proposes four novel frameworks to address challenges mentioned above. The first work is a new multi-phase distributed vulnerability, measurement, and countermeasure selection mechanism based on the attack graph analytical model. The second work is a hybrid intrusion detection and prevention system to protect VN and VM using virtual machines introspection (VMI) and software defined networking (SDN) technologies. The third work further improves the previous works by introducing a VM profiler and VM Security Index (VSI) to keep track the security status of each VM and suggest the optimal countermeasure to mitigate potential threats. The final work is a SDN-based proactive defense mechanism for a cloud system using a reconfiguration model and moving target defense approaches to actively and dynamically change the virtual network configuration of a cloud system.
ContributorsChung, Chun-Jen (Author) / Huang, Dijiang (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Xue, Guoliang (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2015
154142-Thumbnail Image.png
Description
A load balancer is an essential part of many network systems. A load balancer is capable of dividing and redistributing incoming network traffic to different back end servers, thus improving reliability and performance. Existing load balancing solutions can be classified into two categories: hardware-based or software-based. Hardware-based load balancing systems

A load balancer is an essential part of many network systems. A load balancer is capable of dividing and redistributing incoming network traffic to different back end servers, thus improving reliability and performance. Existing load balancing solutions can be classified into two categories: hardware-based or software-based. Hardware-based load balancing systems are hard to manage and force network administrators to scale up (replacing with more powerful but expensive hardware) when their system can not handle the growing traffic. Software-based solutions have a limitation when dealing with a single large TCP flow. In recent years, with the fast developments of virtualization technology, a new trend of network function virtualization (NFV) is being adopted. Instead of using proprietary hardware, an NFV network infrastructure uses virtual machines running to implement network functions such as load balancers, firewalls, etc. In this thesis, a new load balancing system is designed and evaluated. This system is high performance and flexible. It can fully utilize the bandwidth between a load balancer and back end servers compared to traditional load balancers such as HAProxy. The experimental results show that using this NFV load balancer could have $n$ ($n$ is the number of back end servers) times better performance than HAProxy. Also, an extract, transform and load (ETL) application was implemented to demonstrate that this load balancer can shorten data load time. The experiment shows that when loading a large data set (18.3GB), our load balancer needs only 28\% less time than traditional load balancer.
ContributorsWu, Jinxuan (Author) / Syrotiuk, Violet R. (Thesis advisor) / Bazzi, Rida (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2015
153754-Thumbnail Image.png
Description
Commercial load balancers are often in use, and the production network at Arizona State University (ASU) is no exception. However, because the load balancer uses IP addresses, the solution does not apply to all applications. One such application is Rsyslog. This software processes syslog packets and stores them in files.

Commercial load balancers are often in use, and the production network at Arizona State University (ASU) is no exception. However, because the load balancer uses IP addresses, the solution does not apply to all applications. One such application is Rsyslog. This software processes syslog packets and stores them in files. The loss rate of incoming log packets is high due to the incoming rate of the data. The Rsyslog servers are overwhelmed by the continuous data stream. To solve this problem a software defined networking (SDN) based load balancer is designed to perform a transport-level load balancing over the incoming load to Rsyslog servers. In this solution the load is forwarded to one Rsyslog server at a time, according to one of a Round-Robin, Random, or Load-Based policy. This gives time to other servers to process the data they have received and prevent them from being overwhelmed. The evaluation of the proposed solution is conducted a physical testbed with the same data feed as the commercial solution. The results suggest that the SDN-based load balancer is competitive with the commercial load balancer. Replacing the software OpenFlow switch with a hardware switch is likely to further improve the results.
ContributorsGhaffarinejad, Ashkan (Author) / Syrotiuk, Violet R. (Thesis advisor) / Xue, Guoliang (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2015
153832-Thumbnail Image.png
Description
The increasing usage of smart-phones and mobile devices in work environment and IT

industry has brought about unique set of challenges and opportunities. ARM architecture

in particular has evolved to a point where it supports implementations across wide spectrum

of performance points and ARM based tablets and smart-phones are in demand. The

enhancements to

The increasing usage of smart-phones and mobile devices in work environment and IT

industry has brought about unique set of challenges and opportunities. ARM architecture

in particular has evolved to a point where it supports implementations across wide spectrum

of performance points and ARM based tablets and smart-phones are in demand. The

enhancements to basic ARM RISC architecture allow ARM to have high performance,

small code size, low power consumption and small silicon area. Users want their devices to

perform many tasks such as read email, play games, and run other online applications and

organizations no longer desire to provision and maintain individual’s IT equipment. The

term BYOD (Bring Your Own Device) has come into being from demand of such a work

setup and is one of the motivation of this research work. It brings many opportunities such

as increased productivity and reduced costs and challenges such as secured data access,

data leakage and amount of control by the organization.

To provision such a framework we need to bridge the gap from both organizations side

and individuals point of view. Mobile device users face issue of application delivery on

multiple platforms. For instance having purchased many applications from one proprietary

application store, individuals may want to move them to a different platform/device but

currently this is not possible. Organizations face security issues in providing such a solution

as there are many potential threats from allowing BYOD work-style such as unauthorized

access to data, attacks from the devices within and outside the network.

ARM based Secure Mobile SDN framework will resolve these issues and enable employees

to consolidate both personal and business calls and mobile data access on a single device.

To address application delivery issue we are introducing KVM based virtualization that

will allow host OS to run multiple guest OS. To address the security problem we introduce

SDN environment where host would be running bridged network of guest OS using Open

vSwitch . This would allow a remote controller to monitor the state of guest OS for making

important control and traffic flow decisions based on the situation.
ContributorsChowdhary, Ankur (Author) / Huang, Dijiang (Thesis advisor) / Tong, Hanghang (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2015
154622-Thumbnail Image.png
Description
In traditional networks the control and data plane are highly coupled, hindering development. With Software Defined Networking (SDN), the two planes are separated, allowing innovations on either one independently of the other. Here, the control plane is formed by the applications that specify an organization's policy and the data plane

In traditional networks the control and data plane are highly coupled, hindering development. With Software Defined Networking (SDN), the two planes are separated, allowing innovations on either one independently of the other. Here, the control plane is formed by the applications that specify an organization's policy and the data plane contains the forwarding logic. The application sends all commands to an SDN controller which then performs the requested action on behalf of the application. Generally, the requested action is a modification to the flow tables, present in the switches, to reflect a change in the organization's policy. There are a number of ways to control the network using the SDN principles, but the most widely used approach is OpenFlow.

With the applications now having direct access to the flow table entries, it is easy to have inconsistencies arise in the flow table rules. Since the flow rules are structured similar to firewall rules, the research done in analyzing and identifying firewall rule conflicts can be adapted to work with OpenFlow rules.

The main work of this thesis is to implement flow conflict detection logic in OpenDaylight and inspect the applicability of techniques in visualizing the conflicts. A hierarchical edge-bundling technique coupled with a Reingold-Tilford tree is employed to present the relationship between the conflicting rules. Additionally, a table-driven approach is also implemented to display the details of each flow.

Both types of visualization are then tested for correctness by providing them with flows which are known to have conflicts. The conflicts were identified properly and displayed by the views.
ContributorsNatarajan, Janakarajan (Author) / Huang, Dijiang (Thesis advisor) / Syrotiuk, Violet R. (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Arizona State University (Publisher)
Created2016