Matching Items (187)
Filtering by

Clear all filters

150054-Thumbnail Image.png
Description
Emergent environmental issues, ever-shrinking petroleum reserves, and rising fossil fuel costs continue to spur interest in the development of sustainable biofuels from renewable feed-stocks. Meanwhile, however, the development and viability of biofuel fermentations remain limited by numerous factors such as feedback inhibition and inefficient and generally energy intensive product recovery

Emergent environmental issues, ever-shrinking petroleum reserves, and rising fossil fuel costs continue to spur interest in the development of sustainable biofuels from renewable feed-stocks. Meanwhile, however, the development and viability of biofuel fermentations remain limited by numerous factors such as feedback inhibition and inefficient and generally energy intensive product recovery processes. To circumvent both feedback inhibition and recovery issues, researchers have turned their attention to incorporating energy efficient separation techniques such as adsorption in in situ product recovery (ISPR) approaches. This thesis focused on the characterization of two novel adsorbents for the recovery of alcohol biofuels from model aqueous solutions. First, a hydrophobic silica aerogel was evaluated as a biofuel adsorbent through characterization of equilibrium behavior for conventional second generation biofuels (e.g., ethanol and n-butanol). Longer chain and accordingly more hydrophobic alcohols (i.e., n-butanol and 2-pentanol) were more effectively adsorbed than shorter chain alcohols (i.e., ethanol and i-propanol), suggesting a mechanism of hydrophobic adsorption. Still, the adsorbed alcohol capacity at biologically relevant conditions were low relative to other `model' biofuel adsorbents as a result of poor interfacial contact between the aqueous and sorbent. However, sorbent wettability and adsorption is greatly enhanced at high concentrations of alcohol in the aqueous. Consequently, the sorbent exhibits Type IV adsorption isotherms for all biofuels studied, which results from significant multilayer adsorption at elevated alcohol concentrations in the aqueous. Additionally, sorbent wettability significantly affects the dynamic binding efficiency within a packed adsorption column. Second, mesoporous carbons were evaluated as biofuel adsorbents through characterization of equilibrium and kinetic behavior. Variations in synthetic conditions enabled tuning of specific surface area and pore morphology of adsorbents. The adsorbed alcohol capacity increased with elevated specific surface area of the adsorbents. While their adsorption capacity is comparable to polymeric adsorbents of similar surface area, pore morphology and structure of mesoporous carbons greatly influenced adsorption rates. Multiple cycles of adsorbent regeneration rendered no impact on adsorption equilibrium or kinetics. The high chemical and thermal stability of mesoporous carbons provide potential significant advantages over other commonly examined biofuel adsorbents. Correspondingly, mesoporous carbons should be further studied for biofuel ISPR applications.
ContributorsLevario, Thomas (Author) / Nielsen, David R (Thesis advisor) / Vogt, Bryan D (Committee member) / Lind, Mary L (Committee member) / Arizona State University (Publisher)
Created2011
149660-Thumbnail Image.png
Description
Proton exchange membrane fuel cells (PEMFCs) run on pure hydrogen and oxygen (or air), producing electricity, water, and some heat. This makes PEMFC an attractive option for clean power generation. PEMFCs also operate at low temperature which makes them quick to start up and easy to handle. PEMFCs have several

Proton exchange membrane fuel cells (PEMFCs) run on pure hydrogen and oxygen (or air), producing electricity, water, and some heat. This makes PEMFC an attractive option for clean power generation. PEMFCs also operate at low temperature which makes them quick to start up and easy to handle. PEMFCs have several important limitations which must be overcome before commercial viability can be achieved. Active areas of research into making them commercially viable include reducing the cost, size and weight of fuel cells while also increasing their durability and performance. A growing and important part of this research involves the computer modeling of fuel cells. High quality computer modeling and simulation of fuel cells can help speed up the discovery of optimized fuel cell components. Computer modeling can also help improve fundamental understanding of the mechanisms and reactions that take place within the fuel cell. The work presented in this thesis describes a procedure for utilizing computer modeling to create high quality fuel cell simulations using Ansys Fluent 12.1. Methods for creating computer aided design (CAD) models of fuel cells are discussed. Detailed simulation parameters are described and emphasis is placed on establishing convergence criteria which are essential for producing consistent results. A mesh sensitivity study of the catalyst and membrane layers is presented showing the importance of adhering to strictly defined convergence criteria. A study of iteration sensitivity of the simulation at low and high current densities is performed which demonstrates the variance in the rate of convergence and the absolute difference between solution values derived at low numbers of iterations and high numbers of iterations.
ContributorsArvay, Adam (Author) / Madakannan, Arunachalanadar (Thesis advisor) / Peng, Xihong (Committee member) / Liang, Yong (Committee member) / Subach, James (Committee member) / Arizona State University (Publisher)
Created2011
150405-Thumbnail Image.png
Description
Infant mortality rate of field deployed photovoltaic (PV) modules may be expected to be higher than that estimated by standard qualification tests. The reason for increased failure rates may be attributed to the high system voltages. High voltages (HV) in grid connected modules induce additional stress factors that cause new

Infant mortality rate of field deployed photovoltaic (PV) modules may be expected to be higher than that estimated by standard qualification tests. The reason for increased failure rates may be attributed to the high system voltages. High voltages (HV) in grid connected modules induce additional stress factors that cause new degradation mechanisms. These new degradation mechanisms are not recognized by qualification stress tests. To study and model the effect of high system voltages, recently, potential induced degradation (PID) test method has been introduced. Using PID studies, it has been reported that high voltage failure rates are essentially due to increased leakage currents from active semiconducting layer to the grounded module frame, through encapsulant and/or glass. This project involved designing and commissioning of a new PID test bed at Photovoltaic Reliability Laboratory (PRL) of Arizona State University (ASU) to study the mechanisms of HV induced degradation. In this study, PID stress tests have been performed on accelerated stress modules, in addition to fresh modules of crystalline silicon technology. Accelerated stressing includes thermal cycling (TC200 cycles) and damp heat (1000 hours) tests as per IEC 61215. Failure rates in field deployed modules that are exposed to long term weather conditions are better simulated by conducting HV tests on prior accelerated stress tested modules. The PID testing was performed in 3 phases on a set of 5 mono crystalline silicon modules. In Phase-I of PID test, a positive bias of +600 V was applied, between shorted leads and frame of each module, on 3 modules with conducting carbon coating on glass superstrate. The 3 module set was comprised of: 1 fresh control, TC200 and DH1000. The PID test was conducted in an environmental chamber by stressing the modules at 85°C, for 35 hours with an intermittent evaluation for Arrhenius effects. In the Phase-II, a negative bias of -600 V was applied on a set of 3 modules in the chamber as defined above. The 3 module set in phase-II was comprised of: control module from phase-I, TC200 and DH1000. In the Phase-III, the same set of 3 modules which were used in the phase-II again subjected to +600 V bias to observe the recovery of lost power during the Phase-II. Electrical performance, infrared (IR) and electroluminescence (EL) were done prior and post PID testing. It was observed that high voltage positive bias in the first phase resulted in little
o power loss, high voltage negative bias in the second phase caused significant power loss and the high voltage positive bias in the third phase resulted in major recovery of lost power.
ContributorsGoranti, Sandhya (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2011
150342-Thumbnail Image.png
Description
Building Applied Photovoltaics (BAPV) form an essential part of today's solar economy. This thesis is an effort to compare and understand the effect of fan cooling on the temperature of rooftop photovoltaic (PV) modules by comparing two side-by-side arrays (test array and control array) under identical ambient conditions of irradiance,

Building Applied Photovoltaics (BAPV) form an essential part of today's solar economy. This thesis is an effort to compare and understand the effect of fan cooling on the temperature of rooftop photovoltaic (PV) modules by comparing two side-by-side arrays (test array and control array) under identical ambient conditions of irradiance, air temperature, wind speed and wind direction. The lower operating temperature of PV modules due to fan operation mitigates array non uniformity and improves on performance. A crystalline silicon (c-Si) PV module has a light to electrical conversion efficiency of 14-20%. So on a cool sunny day with incident solar irradiance of 1000 W/m2, a PV module with 15% efficiency, will produce about only 150 watts. The rest of the energy is primarily lost in the form of heat. Heat extraction methods for BAPV systems may become increasingly higher in demand as the hot stagnant air underneath the array can be extracted to improve the array efficiency and the extracted low-temperature heat can also be used for residential space heating and water heating. Poly c-Si modules experience a negative temperature coefficient of power at about -0.5% /o C. A typical poly c-Si module would experience power loss due to elevation in temperature, which may be in the range of 25 to 30% for desert conditions such as that of Mesa, Arizona. This thesis investigates the effect of fan cooling on the previously developed thermal models at Arizona State University and on the performance of PV modules/arrays. Ambient conditions are continuously monitored and collected to calculate module temperature using the thermal model and to compare with actually measured temperature of individual modules. Including baseline analysis, the thesis has also looked into the effect of fan on the test array in three stages of 14 continuous days each. Multiple Thermal models are developed in order to identify the effect of fan cooling on performance and temperature uniformity. Although the fan did not prove to have much significant cooling effect on the system, but when combined with wind blocks it helped improve the thermal mismatch both under low and high wind speed conditions.
ContributorsChatterjee, Saurabh (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2011
150421-Thumbnail Image.png
Description
Photovoltaic (PV) modules undergo performance degradation depending on climatic conditions, applications, and system configurations. The performance degradation prediction of PV modules is primarily based on Accelerated Life Testing (ALT) procedures. In order to further strengthen the ALT process, additional investigation of the power degradation of field aged PV modules in

Photovoltaic (PV) modules undergo performance degradation depending on climatic conditions, applications, and system configurations. The performance degradation prediction of PV modules is primarily based on Accelerated Life Testing (ALT) procedures. In order to further strengthen the ALT process, additional investigation of the power degradation of field aged PV modules in various configurations is required. A detailed investigation of 1,900 field aged (12-18 years) PV modules deployed in a power plant application was conducted for this study. Analysis was based on the current-voltage (I-V) measurement of all the 1,900 modules individually. I-V curve data of individual modules formed the basis for calculating the performance degradation of the modules. The percentage performance degradation and rates of degradation were compared to an earlier study done at the same plant. The current research was primarily focused on identifying the extent of potential induced degradation (PID) of individual modules with reference to the negative ground potential. To investigate this, the arrangement and connection of the individual modules/strings was examined in detail. The study also examined the extent of underperformance of every series string due to performance mismatch of individual modules in that string. The power loss due to individual module degradation and module mismatch at string level was then compared to the rated value.
ContributorsJaspreet Singh (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2011
149835-Thumbnail Image.png
Description
This study examines the contemporary school placement decisions of Navajo parents in the reservation community of Piñon, Arizona. School placement decisions are defined as the school where the parent chooses to enroll his/her child for schooling. Twelve Navajo parents participated in this qualitative study, which explored their past

This study examines the contemporary school placement decisions of Navajo parents in the reservation community of Piñon, Arizona. School placement decisions are defined as the school where the parent chooses to enroll his/her child for schooling. Twelve Navajo parents participated in this qualitative study, which explored their past educational experiences in order to garner insight into the current school placement choices they have made for their children. Navajo parents who live within the community of Piñon, AZ who currently have school-aged children living in their household were recruited to participate in this study. Participants took part in 60- to 90-minute interviews that included questions related to their prior educational experiences and current school placement choices for their children. Parents were given an opportunity to reflect about the school placement decisions they have made for their children. The variety of schools Navajo parents are able to choose from were illuminated. These findings have implications for education decision makers by providing insight into which schools parents are choosing and why. The study will assist Navajo Nation policy makers in future educational planning, and may have more general implications for American Indian/Alaskan Native education. This may assist Navajo Education policy makers in making future decisions regarding the newly developed Navajo Department of Education and its education planning. Participants will also benefit from the study by being able to understand how the past has impacted the school placement choices they have made. In doing so parents may be better able to articulate the impetus behind the choices they make for their children, thereby becoming better advocates for themselves and their children. The results of this study impacts scholarly literature as a new viewpoint in the area of school choice. Navajo parents represent a distinct group who make educational choices within a specific context. This study is unique as the impact of historical Indian education policies is considered. Future studies can further expand on the topic creating a unique area of research in the field of Indian education.
ContributorsLansing, Danielle R (Author) / Mccarty, Teresa L. (Thesis advisor) / Romero-Little, Mary Eunice (Committee member) / Frederick, Dale (Committee member) / Arizona State University (Publisher)
Created2011
149879-Thumbnail Image.png
Description
In this dissertation, I focus on a subset of Native American theatre, one that concentrates on peoples of mixed heritages and the place(s) between worlds that they inhabit. As it is an emergent field of research, one goal of this project is to illuminate its range and depth through an

In this dissertation, I focus on a subset of Native American theatre, one that concentrates on peoples of mixed heritages and the place(s) between worlds that they inhabit. As it is an emergent field of research, one goal of this project is to illuminate its range and depth through an examination of three specific points of focus - plays by Elvira and Hortencia Colorado (Chichimec Otomí/México/US), who create theatre together; Diane Glancy (Cherokee/US); and Marie Clements (Métis/Canada). These plays explore some of the possibilities of (hi)story, culture, and language within the theatrical realm across Turtle Island (North America). I believe the playwrights' positionalities in the liminal space between Native and non-Native realms afford these playwrights a unique ability to facilitate cross-cultural dialogues through recentering Native stories and methodologies. I examine the theatrical works of this select group of mixed heritage playwrights, while focusing on how they open up dialogue(s) between cultures, the larger cultural discourses with which they engage, and their innovations in creating these dialogues. While each playwright features specific mixed heritage characters in certain plays, the focus is generally on the subject matter - themes central to current Native and mixed heritage daily realities. I concentrate on where they engage in cross-cultural discourses and innovations; while there are some common themes across the dissertation, the specific points of analysis are exclusive to each chapter. I employ an interdisciplinary approach, which includes theories from theatre and performance studies, indigenous knowledge systems, comparative literary studies, rhetoric, and cultural studies.
ContributorsNoell, Tiffany (Author) / Underiner, Tamara L. (Thesis advisor) / Woodson, Stephani (Committee member) / Brayboy, Bryan (Committee member) / Arizona State University (Publisher)
Created2011
150253-Thumbnail Image.png
Description
Second-generation biofuel feedstocks are currently grown in land-based systems that use valuable resources like water, electricity and fertilizer. This study investigates the potential of near-shore marine (ocean) seawater filtration as a source of planktonic biomass for biofuel production. Mixed marine organisms in the size range of 20µm to 500µm were

Second-generation biofuel feedstocks are currently grown in land-based systems that use valuable resources like water, electricity and fertilizer. This study investigates the potential of near-shore marine (ocean) seawater filtration as a source of planktonic biomass for biofuel production. Mixed marine organisms in the size range of 20µm to 500µm were isolated from the University of California, Santa Barbara (UCSB) seawater filtration system during weekly backwash events between the months of April and August, 2011. The quantity of organic material produced was determined by sample combustion and calculation of ash-free dry weights. Qualitative investigation required density gradient separation with the heavy liquid sodium metatungstate followed by direct transesterification and gas chromatography with mass spectrometry (GC-MS) of the fatty acid methyl esters (FAME) produced. A maximum of 0.083g/L of dried organic material was produced in a single backwash event and a study average of 0.036g/L was calculated. This equates to an average weekly value of 7,674.75g of dried organic material produced from the filtration of approximately 24,417,792 liters of seawater. Temporal variations were limited. Organic quantities decreased over the course of the study. Bio-fouling effects from mussel overgrowth inexplicably increased production values when compared to un-fouled seawater supply lines. FAMEs (biodiesel) averaged 0.004% of the dried organic material with 0.36ml of biodiesel produced per week, on average. C16:0 and C22:6n3 fatty acids comprised the majority of the fatty acids in the samples. Saturated fatty acids made up 30.71% to 44.09% and unsaturated forms comprised 55.90% to 66.32% of the total chemical composition. Both quantities and qualities of organics and FAMEs were unrealistic for use as biodiesel but sample size limitations, system design, geographic and temporal factors may have impacted study results.
ContributorsPierre, Christophe (Author) / Olson, Larry (Thesis advisor) / Sommerfeld, Milton (Committee member) / Brown, Albert (Committee member) / Arizona State University (Publisher)
Created2011
150202-Thumbnail Image.png
Description
Photovoltaic (PV) systems are one of the next generation's renewable energy sources for our world energy demand. PV modules are highly reliable. However, in polluted environments, over time, they will collect grime and dust. There are also limited field data studies about soiling losses on PV modules. The study showed

Photovoltaic (PV) systems are one of the next generation's renewable energy sources for our world energy demand. PV modules are highly reliable. However, in polluted environments, over time, they will collect grime and dust. There are also limited field data studies about soiling losses on PV modules. The study showed how important it is to investigate the effect of tilt angle on soiling. The study includes two sets of mini-modules. Each set has 9 PV modules tilted at 0, 5, 10, 15, 20, 23, 30, 33 and 40°. The first set called "Cleaned" was cleaned every other day. The second set called "Soiled" was never cleaned after the first day. The short circuit current, a measure of irradiance, and module temperature was monitored and recorded every two minutes over three months (January-March 2011). The data were analyzed to investigate the effect of tilt angle on daily and monthly soiling, and hence transmitted solar insolation and energy production by PV modules. The study shows that during the period of January through March 2011 there was an average loss due to soiling of approximately 2.02% for 0° tilt angle. Modules at tilt anlges 23° and 33° also have some insolation losses but do not come close to the module at 0° tilt angle. Tilt anlge 23° has approximately 1.05% monthly insolation loss, and 33° tilt angle has an insolation loss of approximately 0.96%. The soiling effect is present at any tilt angle, but the magnitude is evident: the flatter the solar module is placed the more energy it will lose.
ContributorsCano Valero, José (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Madakannan, Arunachalanadar (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2011
150289-Thumbnail Image.png
Description
A primary motivation of research in photovoltaic technology is to obtain higher efficiency photovoltaic devices at reduced cost of production so that solar electricity can be cost competitive. The majority of photovoltaic technologies are based on p-n junction, with efficiency potential being much lower than the thermodynamic limits of individual

A primary motivation of research in photovoltaic technology is to obtain higher efficiency photovoltaic devices at reduced cost of production so that solar electricity can be cost competitive. The majority of photovoltaic technologies are based on p-n junction, with efficiency potential being much lower than the thermodynamic limits of individual technologies and thereby providing substantial scope for further improvements in efficiency. The thesis explores photovoltaic devices using new physical processes that rely on thin layers and are capable of attaining the thermodynamic limit of photovoltaic technology. Silicon heterostructure is one of the candidate technologies in which thin films induce a minority carrier collecting junction in silicon and the devices can achieve efficiency close to the thermodynamic limits of silicon technology. The thesis proposes and experimentally establishes a new theory explaining the operation of silicon heterostructure solar cells. The theory will assist in identifying the optimum properties of thin film materials for silicon heterostructure and help in design and characterization of the devices, along with aiding in developing new devices based on this technology. The efficiency potential of silicon heterostructure is constrained by the thermodynamic limit (31%) of single junction solar cell and is considerably lower than the limit of photovoltaic conversion (~ 80 %). A further improvement in photovoltaic conversion efficiency is possible by implementing a multiple quasi-fermi level system (MQFL). A MQFL allows the absorption of sub band gap photons with current being extracted at a higher band-gap, thereby allowing to overcome the efficiency limit of single junction devices. A MQFL can be realized either by thin epitaxial layers of alternating higher and lower band gap material with nearly lattice matched (quantum well) or highly lattice mismatched (quantum dot) structure. The thesis identifies the material combination for quantum well structure and calculates the absorption coefficient of a MQFl based on quantum well. GaAsSb (barrier)/InAs(dot) was identified as a candidate material for MQFL using quantum dot. The thesis explains the growth mechanism of GaAsSb and the optimization of GaAsSb and GaAs heterointerface.
ContributorsGhosha, Kuṇāla (Author) / Bowden, Stuart (Thesis advisor) / Honsberg, Christiana (Thesis advisor) / Vasileska, Dragica (Committee member) / Goodnick, Stephen (Committee member) / Arizona State University (Publisher)
Created2011