Matching Items (6)
Filtering by

Clear all filters

153461-Thumbnail Image.png
Description
Methods to test hypotheses of mediated effects in the pretest-posttest control group design are understudied in the behavioral sciences (MacKinnon, 2008). Because many studies aim to answer questions about mediating processes in the pretest-posttest control group design, there is a need to determine which model is most appropriate to

Methods to test hypotheses of mediated effects in the pretest-posttest control group design are understudied in the behavioral sciences (MacKinnon, 2008). Because many studies aim to answer questions about mediating processes in the pretest-posttest control group design, there is a need to determine which model is most appropriate to test hypotheses about mediating processes and what happens to estimates of the mediated effect when model assumptions are violated in this design. The goal of this project was to outline estimator characteristics of four longitudinal mediation models and the cross-sectional mediation model. Models were compared on type 1 error rates, statistical power, accuracy of confidence interval coverage, and bias of parameter estimates. Four traditional longitudinal models and the cross-sectional model were assessed. The four longitudinal models were analysis of covariance (ANCOVA) using pretest scores as a covariate, path analysis, difference scores, and residualized change scores. A Monte Carlo simulation study was conducted to evaluate the different models across a wide range of sample sizes and effect sizes. All models performed well in terms of type 1 error rates and the ANCOVA and path analysis models performed best in terms of bias and empirical power. The difference score, residualized change score, and cross-sectional models all performed well given certain conditions held about the pretest measures. These conditions and future directions are discussed.
ContributorsValente, Matthew John (Author) / MacKinnon, David (Thesis advisor) / West, Stephen (Committee member) / Aiken, Leona (Committee member) / Enders, Craig (Committee member) / Arizona State University (Publisher)
Created2015
154939-Thumbnail Image.png
Description
The comparison of between- versus within-person relations addresses a central issue in psychological research regarding whether group-level relations among variables generalize to individual group members. Between- and within-person effects may differ in magnitude as well as direction, and contextual multilevel models can accommodate this difference. Contextual multilevel models have been

The comparison of between- versus within-person relations addresses a central issue in psychological research regarding whether group-level relations among variables generalize to individual group members. Between- and within-person effects may differ in magnitude as well as direction, and contextual multilevel models can accommodate this difference. Contextual multilevel models have been explicated mostly for cross-sectional data, but they can also be applied to longitudinal data where level-1 effects represent within-person relations and level-2 effects represent between-person relations. With longitudinal data, estimating the contextual effect allows direct evaluation of whether between-person and within-person effects differ. Furthermore, these models, unlike single-level models, permit individual differences by allowing within-person slopes to vary across individuals. This study examined the statistical performance of the contextual model with a random slope for longitudinal within-person fluctuation data.

A Monte Carlo simulation was used to generate data based on the contextual multilevel model, where sample size, effect size, and intraclass correlation (ICC) of the predictor variable were varied. The effects of simulation factors on parameter bias, parameter variability, and standard error accuracy were assessed. Parameter estimates were in general unbiased. Power to detect the slope variance and contextual effect was over 80% for most conditions, except some of the smaller sample size conditions. Type I error rates for the contextual effect were also high for some of the smaller sample size conditions. Conclusions and future directions are discussed.
ContributorsWurpts, Ingrid Carlson (Author) / Mackinnon, David P (Thesis advisor) / West, Stephen G. (Committee member) / Grimm, Kevin J. (Committee member) / Suk, Hye Won (Committee member) / Arizona State University (Publisher)
Created2016
155069-Thumbnail Image.png
Description
This paper investigates a relatively new analysis method for longitudinal data in the framework of functional data analysis. This approach treats longitudinal data as so-called sparse functional data. The first section of the paper introduces functional data and the general ideas of functional data analysis. The second section discusses the

This paper investigates a relatively new analysis method for longitudinal data in the framework of functional data analysis. This approach treats longitudinal data as so-called sparse functional data. The first section of the paper introduces functional data and the general ideas of functional data analysis. The second section discusses the analysis of longitudinal data in the context of functional data analysis, while considering the unique characteristics of longitudinal data such, in particular sparseness and missing data. The third section introduces functional mixed-effects models that can handle these unique characteristics of sparseness and missingness. The next section discusses a preliminary simulation study conducted to examine the performance of a functional mixed-effects model under various conditions. An extended simulation study was carried out to evaluate the estimation accuracy of a functional mixed-effects model. Specifically, the accuracy of the estimated trajectories was examined under various conditions including different types of missing data and varying levels of sparseness.
ContributorsWard, Kimberly l (Author) / Suk, Hye Won (Thesis advisor) / Aiken, Leona (Committee member) / Grimm, Kevin (Committee member) / Arizona State University (Publisher)
Created2016
155625-Thumbnail Image.png
Description
The process of combining data is one in which information from disjoint datasets sharing at least a number of common variables is merged. This process is commonly referred to as data fusion, with the main objective of creating a new dataset permitting more flexible analyses than the separate analysis of

The process of combining data is one in which information from disjoint datasets sharing at least a number of common variables is merged. This process is commonly referred to as data fusion, with the main objective of creating a new dataset permitting more flexible analyses than the separate analysis of each individual dataset. Many data fusion methods have been proposed in the literature, although most utilize the frequentist framework. This dissertation investigates a new approach called Bayesian Synthesis in which information obtained from one dataset acts as priors for the next analysis. This process continues sequentially until a single posterior distribution is created using all available data. These informative augmented data-dependent priors provide an extra source of information that may aid in the accuracy of estimation. To examine the performance of the proposed Bayesian Synthesis approach, first, results of simulated data with known population values under a variety of conditions were examined. Next, these results were compared to those from the traditional maximum likelihood approach to data fusion, as well as the data fusion approach analyzed via Bayes. The assessment of parameter recovery based on the proposed Bayesian Synthesis approach was evaluated using four criteria to reflect measures of raw bias, relative bias, accuracy, and efficiency. Subsequently, empirical analyses with real data were conducted. For this purpose, the fusion of real data from five longitudinal studies of mathematics ability varying in their assessment of ability and in the timing of measurement occasions was used. Results from the Bayesian Synthesis and data fusion approaches with combined data using Bayesian and maximum likelihood estimation methods were reported. The results illustrate that Bayesian Synthesis with data driven priors is a highly effective approach, provided that the sample sizes for the fused data are large enough to provide unbiased estimates. Bayesian Synthesis provides another beneficial approach to data fusion that can effectively be used to enhance the validity of conclusions obtained from the merging of data from different studies.
ContributorsMarcoulides, Katerina M (Author) / Grimm, Kevin (Thesis advisor) / Levy, Roy (Thesis advisor) / MacKinnon, David (Committee member) / Suk, Hye Won (Committee member) / Arizona State University (Publisher)
Created2017
152217-Thumbnail Image.png
Description
In investigating mediating processes, researchers usually use randomized experiments and linear regression or structural equation modeling to determine if the treatment affects the hypothesized mediator and if the mediator affects the targeted outcome. However, randomizing the treatment will not yield accurate causal path estimates unless certain assumptions are satisfied. Since

In investigating mediating processes, researchers usually use randomized experiments and linear regression or structural equation modeling to determine if the treatment affects the hypothesized mediator and if the mediator affects the targeted outcome. However, randomizing the treatment will not yield accurate causal path estimates unless certain assumptions are satisfied. Since randomization of the mediator may not be plausible for most studies (i.e., the mediator status is not randomly assigned, but self-selected by participants), both the direct and indirect effects may be biased by confounding variables. The purpose of this dissertation is (1) to investigate the extent to which traditional mediation methods are affected by confounding variables and (2) to assess the statistical performance of several modern methods to address confounding variable effects in mediation analysis. This dissertation first reviewed the theoretical foundations of causal inference in statistical mediation analysis, modern statistical analysis for causal inference, and then described different methods to estimate causal direct and indirect effects in the presence of two post-treatment confounders. A large simulation study was designed to evaluate the extent to which ordinary regression and modern causal inference methods are able to obtain correct estimates of the direct and indirect effects when confounding variables that are present in the population are not included in the analysis. Five methods were compared in terms of bias, relative bias, mean square error, statistical power, Type I error rates, and confidence interval coverage to test how robust the methods are to the violation of the no unmeasured confounders assumption and confounder effect sizes. The methods explored were linear regression with adjustment, inverse propensity weighting, inverse propensity weighting with truncated weights, sequential g-estimation, and a doubly robust sequential g-estimation. Results showed that in estimating the direct and indirect effects, in general, sequential g-estimation performed the best in terms of bias, Type I error rates, power, and coverage across different confounder effect, direct effect, and sample sizes when all confounders were included in the estimation. When one of the two confounders were omitted from the estimation process, in general, none of the methods had acceptable relative bias in the simulation study. Omitting one of the confounders from estimation corresponded to the common case in mediation studies where no measure of a confounder is available but a confounder may affect the analysis. Failing to measure potential post-treatment confounder variables in a mediation model leads to biased estimates regardless of the analysis method used and emphasizes the importance of sensitivity analysis for causal mediation analysis.
ContributorsKisbu Sakarya, Yasemin (Author) / Mackinnon, David Peter (Thesis advisor) / Aiken, Leona (Committee member) / West, Stephen (Committee member) / Millsap, Roger (Committee member) / Arizona State University (Publisher)
Created2013
154396-Thumbnail Image.png
Description
Measurement invariance exists when a scale functions equivalently across people and is therefore essential for making meaningful group comparisons. Often, measurement invariance is examined with independent and identically distributed data; however, there are times when the participants are clustered within units, creating dependency in the data. Researchers have taken different

Measurement invariance exists when a scale functions equivalently across people and is therefore essential for making meaningful group comparisons. Often, measurement invariance is examined with independent and identically distributed data; however, there are times when the participants are clustered within units, creating dependency in the data. Researchers have taken different approaches to address this dependency when studying measurement invariance (e.g., Kim, Kwok, & Yoon, 2012; Ryu, 2014; Kim, Yoon, Wen, Luo, & Kwok, 2015), but there are no comparisons of the various approaches. The purpose of this master's thesis was to investigate measurement invariance in multilevel data when the grouping variable was a level-1 variable using five different approaches. Publicly available data from the Early Childhood Longitudinal Study-Kindergarten Cohort (ECLS-K) was used as an illustrative example. The construct of early behavior, which was made up of four teacher-rated behavior scales, was evaluated for measurement invariance in relation to gender. In the specific case of this illustrative example, the statistical conclusions of the five approaches were in agreement (i.e., the loading of the externalizing item and the intercept of the approaches to learning item were not invariant). Simulation work should be done to investigate in which situations the conclusions of these approaches diverge.
ContributorsGunn, Heather (Author) / Grimm, Kevin J. (Thesis advisor) / Aiken, Leona S. (Committee member) / Suk, Hye Won (Committee member) / Arizona State University (Publisher)
Created2016