Matching Items (2)
Filtering by

Clear all filters

149657-Thumbnail Image.png
Description
The Toledo Core Based Statistical Area (CBSA) presents an interesting case study for the new sulfur dioxide (SO2) one hour standard. Since no SO2 monitor within 75 miles to estimate the attainment status of the area, American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) was used in this study to

The Toledo Core Based Statistical Area (CBSA) presents an interesting case study for the new sulfur dioxide (SO2) one hour standard. Since no SO2 monitor within 75 miles to estimate the attainment status of the area, American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) was used in this study to predict potential problems associated with the newly revised standard. The Toledo CBSA is home to two oil refineries, a glass making industry, several coal fired lime kilns, and a sulfuric acid regeneration plant, The CBSA 3 has coal fired power plants within a 30 mile radius of its center. Additionally, Toledo is a major Great Lakes shipping port visited by both lake and ocean going vessels. As a transportation hub, the area is also traversed by several rail lines which feed four rail switching yards. Impacts of older generation freighters, or "steamers", utilizing high sulfur "Bunker C" fuel oil in the area is also an issue. With the unique challenges presented by an SO2 one hour standard, this study attempted to estimate potential problem areas in advance of any monitoring data being gathered. Based on the publicly available data as inputs, it appears that a significant risk of non-attainment may exist in the Toledo CBSA. However, future on-the-books controls and currently proposed regulatory actions appear to drive the risk below significance by 2015. Any designation as non-attainment should be self-correcting and without need for controls other than those used in these models. The outcomes of this screening study are intended for use as a basis for assessments for other mid-sized, industrial areas without SO2 monitors. The results may also be utilized by industries and planning groups within the Toledo CBSA to address potential issues in advance of monitoring system deployment to lower the risk of attaining long term or perpetual non-attainment status.
ContributorsMyers, Greg Francis (Author) / Olson, Larry (Thesis advisor) / Edwards, David (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2011
Description
In rural and urban areas of Nigeria, dependence on groundwater is increasing since the population is growing and high quality, treated municipal water is scarce. Municipal drinking water is often compromised because of old and leaking distribution pipes. About 58% of the water consumed in Lagos State, Nigeria, comes from

In rural and urban areas of Nigeria, dependence on groundwater is increasing since the population is growing and high quality, treated municipal water is scarce. Municipal drinking water is often compromised because of old and leaking distribution pipes. About 58% of the water consumed in Lagos State, Nigeria, comes from residential wells. However, a majority of residential wells are shallow wells that are constructed relatively close to septic tanks or pit latrines and are therefore subject to contamination. In certain parts of Africa, there is high potential of severe epidemic if water quality is not improved. With increasing reliance on groundwater, a need exists to monitor the quality of groundwater. This thesis develops a plan for a monitoring program for residential wells in Lagos State, Nigeria. The program focuses on ways by which owners can maintain reasonably good water quality, and on the role of government in implementing water quality requirements. In addition, this thesis describes a survey conducted in various areas of Lagos State to assess community awareness of the importance of groundwater quality and its impact on individuals and the community at large. The survey shows that 30% to 40% of the households have located their wells and septic tanks in the same general area. Various templates have been created to help the staff of a future monitoring program team to effectively gather information during site characterization. A "Questions and Answers" leaflet has been developed to educate citizens about the need for monitoring residential wells. 
ContributorsTalabi, Omogbemiga Adepitan (Author) / Edwards, David (Thesis advisor) / Hild, Nicholas (Committee member) / Olson, Larry (Committee member) / Arizona State University (Publisher)
Created2010