Matching Items (3)
Filtering by

Clear all filters

151716-Thumbnail Image.png
Description
The rapid escalation of technology and the widespread emergence of modern technological equipments have resulted in the generation of humongous amounts of digital data (in the form of images, videos and text). This has expanded the possibility of solving real world problems using computational learning frameworks. However, while gathering a

The rapid escalation of technology and the widespread emergence of modern technological equipments have resulted in the generation of humongous amounts of digital data (in the form of images, videos and text). This has expanded the possibility of solving real world problems using computational learning frameworks. However, while gathering a large amount of data is cheap and easy, annotating them with class labels is an expensive process in terms of time, labor and human expertise. This has paved the way for research in the field of active learning. Such algorithms automatically select the salient and exemplar instances from large quantities of unlabeled data and are effective in reducing human labeling effort in inducing classification models. To utilize the possible presence of multiple labeling agents, there have been attempts towards a batch mode form of active learning, where a batch of data instances is selected simultaneously for manual annotation. This dissertation is aimed at the development of novel batch mode active learning algorithms to reduce manual effort in training classification models in real world multimedia pattern recognition applications. Four major contributions are proposed in this work: $(i)$ a framework for dynamic batch mode active learning, where the batch size and the specific data instances to be queried are selected adaptively through a single formulation, based on the complexity of the data stream in question, $(ii)$ a batch mode active learning strategy for fuzzy label classification problems, where there is an inherent imprecision and vagueness in the class label definitions, $(iii)$ batch mode active learning algorithms based on convex relaxations of an NP-hard integer quadratic programming (IQP) problem, with guaranteed bounds on the solution quality and $(iv)$ an active matrix completion algorithm and its application to solve several variants of the active learning problem (transductive active learning, multi-label active learning, active feature acquisition and active learning for regression). These contributions are validated on the face recognition and facial expression recognition problems (which are commonly encountered in real world applications like robotics, security and assistive technology for the blind and the visually impaired) and also on collaborative filtering applications like movie recommendation.
ContributorsChakraborty, Shayok (Author) / Panchanathan, Sethuraman (Thesis advisor) / Balasubramanian, Vineeth N. (Committee member) / Li, Baoxin (Committee member) / Mittelmann, Hans (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2013
149907-Thumbnail Image.png
Description
Most existing approaches to complex event processing over streaming data rely on the assumption that the matches to the queries are rare and that the goal of the system is to identify these few matches within the incoming deluge of data. In many applications, such as stock market analysis and

Most existing approaches to complex event processing over streaming data rely on the assumption that the matches to the queries are rare and that the goal of the system is to identify these few matches within the incoming deluge of data. In many applications, such as stock market analysis and user credit card purchase pattern monitoring, however the matches to the user queries are in fact plentiful and the system has to efficiently sift through these many matches to locate only the few most preferable matches. In this work, we propose a complex pattern ranking (CPR) framework for specifying top-k pattern queries over streaming data, present new algorithms to support top-k pattern queries in data streaming environments, and verify the effectiveness and efficiency of the proposed algorithms. The developed algorithms identify top-k matching results satisfying both patterns as well as additional criteria. To support real-time processing of the data streams, instead of computing top-k results from scratch for each time window, we maintain top-k results dynamically as new events come and old ones expire. We also develop new top-k join execution strategies that are able to adapt to the changing situations (e.g., sorted and random access costs, join rates) without having to assume a priori presence of data statistics. Experiments show significant improvements over existing approaches.
ContributorsWang, Xinxin (Author) / Candan, K. Selcuk (Thesis advisor) / Chen, Yi (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2011
150189-Thumbnail Image.png
Description
This thesis research attempts to observe, measure and visualize the communication patterns among developers of an open source community and analyze how this can be inferred in terms of progress of that open source project. Here I attempted to analyze the Ubuntu open source project's email data (9 subproject log

This thesis research attempts to observe, measure and visualize the communication patterns among developers of an open source community and analyze how this can be inferred in terms of progress of that open source project. Here I attempted to analyze the Ubuntu open source project's email data (9 subproject log archives over a period of five years) and focused on drawing more precise metrics from different perspectives of the communication data. Also, I attempted to overcome the scalability issue by using Apache Pig libraries, which run on a MapReduce framework based Hadoop Cluster. I described four metrics based on which I observed and analyzed the data and also presented the results which show the required patterns and anomalies to better understand and infer the communication. Also described the usage experience with Pig Latin (scripting language of Apache Pig Libraries) for this research and how they brought the feature of scalability, simplicity, and visibility in this data intensive research work. These approaches are useful in project monitoring, to augment human observation and reporting, in social network analysis, to track individual contributions.
ContributorsMotamarri, Lakshminarayana (Author) / Santanam, Raghu (Thesis advisor) / Ye, Jieping (Thesis advisor) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2011