Matching Items (9)
Filtering by

Clear all filters

149922-Thumbnail Image.png
Description
Bridging semantic gap is one of the fundamental problems in multimedia computing and pattern recognition. The challenge of associating low-level signal with their high-level semantic interpretation is mainly due to the fact that semantics are often conveyed implicitly in a context, relying on interactions among multiple levels of concepts or

Bridging semantic gap is one of the fundamental problems in multimedia computing and pattern recognition. The challenge of associating low-level signal with their high-level semantic interpretation is mainly due to the fact that semantics are often conveyed implicitly in a context, relying on interactions among multiple levels of concepts or low-level data entities. Also, additional domain knowledge may often be indispensable for uncovering the underlying semantics, but in most cases such domain knowledge is not readily available from the acquired media streams. Thus, making use of various types of contextual information and leveraging corresponding domain knowledge are vital for effectively associating high-level semantics with low-level signals with higher accuracies in multimedia computing problems. In this work, novel computational methods are explored and developed for incorporating contextual information/domain knowledge in different forms for multimedia computing and pattern recognition problems. Specifically, a novel Bayesian approach with statistical-sampling-based inference is proposed for incorporating a special type of domain knowledge, spatial prior for the underlying shapes; cross-modality correlations via Kernel Canonical Correlation Analysis is explored and the learnt space is then used for associating multimedia contents in different forms; model contextual information as a graph is leveraged for regulating interactions among high-level semantic concepts (e.g., category labels), low-level input signal (e.g., spatial/temporal structure). Four real-world applications, including visual-to-tactile face conversion, photo tag recommendation, wild web video classification and unconstrained consumer video summarization, are selected to demonstrate the effectiveness of the approaches. These applications range from classic research challenges to emerging tasks in multimedia computing. Results from experiments on large-scale real-world data with comparisons to other state-of-the-art methods and subjective evaluations with end users confirmed that the developed approaches exhibit salient advantages, suggesting that they are promising for leveraging contextual information/domain knowledge for a wide range of multimedia computing and pattern recognition problems.
ContributorsWang, Zhesheng (Author) / Li, Baoxin (Thesis advisor) / Sundaram, Hari (Committee member) / Qian, Gang (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2011
150181-Thumbnail Image.png
Description
Real-world environments are characterized by non-stationary and continuously evolving data. Learning a classification model on this data would require a framework that is able to adapt itself to newer circumstances. Under such circumstances, transfer learning has come to be a dependable methodology for improving classification performance with reduced training costs

Real-world environments are characterized by non-stationary and continuously evolving data. Learning a classification model on this data would require a framework that is able to adapt itself to newer circumstances. Under such circumstances, transfer learning has come to be a dependable methodology for improving classification performance with reduced training costs and without the need for explicit relearning from scratch. In this thesis, a novel instance transfer technique that adapts a "Cost-sensitive" variation of AdaBoost is presented. The method capitalizes on the theoretical and functional properties of AdaBoost to selectively reuse outdated training instances obtained from a "source" domain to effectively classify unseen instances occurring in a different, but related "target" domain. The algorithm is evaluated on real-world classification problems namely accelerometer based 3D gesture recognition, smart home activity recognition and text categorization. The performance on these datasets is analyzed and evaluated against popular boosting-based instance transfer techniques. In addition, supporting empirical studies, that investigate some of the less explored bottlenecks of boosting based instance transfer methods, are presented, to understand the suitability and effectiveness of this form of knowledge transfer.
ContributorsVenkatesan, Ashok (Author) / Panchanathan, Sethuraman (Thesis advisor) / Li, Baoxin (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2011
151926-Thumbnail Image.png
Description
In recent years, machine learning and data mining technologies have received growing attention in several areas such as recommendation systems, natural language processing, speech and handwriting recognition, image processing and biomedical domain. Many of these applications which deal with physiological and biomedical data require person specific or person adaptive systems.

In recent years, machine learning and data mining technologies have received growing attention in several areas such as recommendation systems, natural language processing, speech and handwriting recognition, image processing and biomedical domain. Many of these applications which deal with physiological and biomedical data require person specific or person adaptive systems. The greatest challenge in developing such systems is the subject-dependent data variations or subject-based variability in physiological and biomedical data, which leads to difference in data distributions making the task of modeling these data, using traditional machine learning algorithms, complex and challenging. As a result, despite the wide application of machine learning, efficient deployment of its principles to model real-world data is still a challenge. This dissertation addresses the problem of subject based variability in physiological and biomedical data and proposes person adaptive prediction models based on novel transfer and active learning algorithms, an emerging field in machine learning. One of the significant contributions of this dissertation is a person adaptive method, for early detection of muscle fatigue using Surface Electromyogram signals, based on a new multi-source transfer learning algorithm. This dissertation also proposes a subject-independent algorithm for grading the progression of muscle fatigue from 0 to 1 level in a test subject, during isometric or dynamic contractions, at real-time. Besides subject based variability, biomedical image data also varies due to variations in their imaging techniques, leading to distribution differences between the image databases. Hence a classifier learned on one database may perform poorly on the other database. Another significant contribution of this dissertation has been the design and development of an efficient biomedical image data annotation framework, based on a novel combination of transfer learning and a new batch-mode active learning method, capable of addressing the distribution differences across databases. The methodologies developed in this dissertation are relevant and applicable to a large set of computing problems where there is a high variation of data between subjects or sources, such as face detection, pose detection and speech recognition. From a broader perspective, these frameworks can be viewed as a first step towards design of automated adaptive systems for real world data.
ContributorsChattopadhyay, Rita (Author) / Panchanathan, Sethuraman (Thesis advisor) / Ye, Jieping (Thesis advisor) / Li, Baoxin (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2013
149307-Thumbnail Image.png
Description
Continuous advancements in biomedical research have resulted in the production of vast amounts of scientific data and literature discussing them. The ultimate goal of computational biology is to translate these large amounts of data into actual knowledge of the complex biological processes and accurate life science models. The ability to

Continuous advancements in biomedical research have resulted in the production of vast amounts of scientific data and literature discussing them. The ultimate goal of computational biology is to translate these large amounts of data into actual knowledge of the complex biological processes and accurate life science models. The ability to rapidly and effectively survey the literature is necessary for the creation of large scale models of the relationships among biomedical entities as well as hypothesis generation to guide biomedical research. To reduce the effort and time spent in performing these activities, an intelligent search system is required. Even though many systems aid in navigating through this wide collection of documents, the vastness and depth of this information overload can be overwhelming. An automated extraction system coupled with a cognitive search and navigation service over these document collections would not only save time and effort, but also facilitate discovery of the unknown information implicitly conveyed in the texts. This thesis presents the different approaches used for large scale biomedical named entity recognition, and the challenges faced in each. It also proposes BioEve: an integrative framework to fuse a faceted search with information extraction to provide a search service that addresses the user's desire for "completeness" of the query results, not just the top-ranked ones. This information extraction system enables discovery of important semantic relationships between entities such as genes, diseases, drugs, and cell lines and events from biomedical text on MEDLINE, which is the largest publicly available database of the world's biomedical journal literature. It is an innovative search and discovery service that makes it easier to search
avigate and discover knowledge hidden in life sciences literature. To demonstrate the utility of this system, this thesis also details a prototype enterprise quality search and discovery service that helps researchers with a guided step-by-step query refinement, by suggesting concepts enriched in intermediate results, and thereby facilitating the "discover more as you search" paradigm.
ContributorsKanwar, Pradeep (Author) / Davulcu, Hasan (Thesis advisor) / Dinu, Valentin (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2010
154464-Thumbnail Image.png
Description
The rapid growth of social media in recent years provides a large amount of user-generated visual objects, e.g., images and videos. Advanced semantic understanding approaches on such visual objects are desired to better serve applications such as human-machine interaction, image retrieval, etc. Semantic visual attributes have been proposed and utilized

The rapid growth of social media in recent years provides a large amount of user-generated visual objects, e.g., images and videos. Advanced semantic understanding approaches on such visual objects are desired to better serve applications such as human-machine interaction, image retrieval, etc. Semantic visual attributes have been proposed and utilized in multiple visual computing tasks to bridge the so-called "semantic gap" between extractable low-level feature representations and high-level semantic understanding of the visual objects.

Despite years of research, there are still some unsolved problems on semantic attribute learning. First, real-world applications usually involve hundreds of attributes which requires great effort to acquire sufficient amount of labeled data for model learning. Second, existing attribute learning work for visual objects focuses primarily on images, with semantic analysis on videos left largely unexplored.

In this dissertation I conduct innovative research and propose novel approaches to tackling the aforementioned problems. In particular, I propose robust and accurate learning frameworks on both attribute ranking and prediction by exploring the correlation among multiple attributes and utilizing various types of label information. Furthermore, I propose a video-based skill coaching framework by extending attribute learning to the video domain for robust motion skill analysis. Experiments on various types of applications and datasets and comparisons with multiple state-of-the-art baseline approaches confirm that my proposed approaches can achieve significant performance improvements for the general attribute learning problem.
ContributorsChen, Lin (Author) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Wang, Yalin (Committee member) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2016
155085-Thumbnail Image.png
Description
High-level inference tasks in video applications such as recognition, video retrieval, and zero-shot classification have become an active research area in recent years. One fundamental requirement for such applications is to extract high-quality features that maintain high-level information in the videos.

Many video feature extraction algorithms have been purposed, such

High-level inference tasks in video applications such as recognition, video retrieval, and zero-shot classification have become an active research area in recent years. One fundamental requirement for such applications is to extract high-quality features that maintain high-level information in the videos.

Many video feature extraction algorithms have been purposed, such as STIP, HOG3D, and Dense Trajectories. These algorithms are often referred to as “handcrafted” features as they were deliberately designed based on some reasonable considerations. However, these algorithms may fail when dealing with high-level tasks or complex scene videos. Due to the success of using deep convolution neural networks (CNNs) to extract global representations for static images, researchers have been using similar techniques to tackle video contents. Typical techniques first extract spatial features by processing raw images using deep convolution architectures designed for static image classifications. Then simple average, concatenation or classifier-based fusion/pooling methods are applied to the extracted features. I argue that features extracted in such ways do not acquire enough representative information since videos, unlike images, should be characterized as a temporal sequence of semantically coherent visual contents and thus need to be represented in a manner considering both semantic and spatio-temporal information.

In this thesis, I propose a novel architecture to learn semantic spatio-temporal embedding for videos to support high-level video analysis. The proposed method encodes video spatial and temporal information separately by employing a deep architecture consisting of two channels of convolutional neural networks (capturing appearance and local motion) followed by their corresponding Fully Connected Gated Recurrent Unit (FC-GRU) encoders for capturing longer-term temporal structure of the CNN features. The resultant spatio-temporal representation (a vector) is used to learn a mapping via a Fully Connected Multilayer Perceptron (FC-MLP) to the word2vec semantic embedding space, leading to a semantic interpretation of the video vector that supports high-level analysis. I evaluate the usefulness and effectiveness of this new video representation by conducting experiments on action recognition, zero-shot video classification, and semantic video retrieval (word-to-video) retrieval, using the UCF101 action recognition dataset.
ContributorsHu, Sheng-Hung (Author) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Liang, Jianming (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2016
152840-Thumbnail Image.png
Description
Many learning models have been proposed for various tasks in visual computing. Popular examples include hidden Markov models and support vector machines. Recently, sparse-representation-based learning methods have attracted a lot of attention in the computer vision field, largely because of their impressive performance in many applications. In the literature, many

Many learning models have been proposed for various tasks in visual computing. Popular examples include hidden Markov models and support vector machines. Recently, sparse-representation-based learning methods have attracted a lot of attention in the computer vision field, largely because of their impressive performance in many applications. In the literature, many of such sparse learning methods focus on designing or application of some learning techniques for certain feature space without much explicit consideration on possible interaction between the underlying semantics of the visual data and the employed learning technique. Rich semantic information in most visual data, if properly incorporated into algorithm design, should help achieving improved performance while delivering intuitive interpretation of the algorithmic outcomes. My study addresses the problem of how to explicitly consider the semantic information of the visual data in the sparse learning algorithms. In this work, we identify four problems which are of great importance and broad interest to the community. Specifically, a novel approach is proposed to incorporate label information to learn a dictionary which is not only reconstructive but also discriminative; considering the formation process of face images, a novel image decomposition approach for an ensemble of correlated images is proposed, where a subspace is built from the decomposition and applied to face recognition; based on the observation that, the foreground (or salient) objects are sparse in input domain and the background is sparse in frequency domain, a novel and efficient spatio-temporal saliency detection algorithm is proposed to identify the salient regions in video; and a novel hidden Markov model learning approach is proposed by utilizing a sparse set of pairwise comparisons among the data, which is easier to obtain and more meaningful, consistent than tradition labels, in many scenarios, e.g., evaluating motion skills in surgical simulations. In those four problems, different types of semantic information are modeled and incorporated in designing sparse learning algorithms for the corresponding visual computing tasks. Several real world applications are selected to demonstrate the effectiveness of the proposed methods, including, face recognition, spatio-temporal saliency detection, abnormality detection, spatio-temporal interest point detection, motion analysis and emotion recognition. In those applications, data of different modalities are involved, ranging from audio signal, image to video. Experiments on large scale real world data with comparisons to state-of-art methods confirm the proposed approaches deliver salient advantages, showing adding those semantic information dramatically improve the performances of the general sparse learning methods.
ContributorsZhang, Qiang (Author) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Wang, Yalin (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2014
155339-Thumbnail Image.png
Description
The widespread adoption of computer vision models is often constrained by the issue of domain mismatch. Models that are trained with data belonging to one distribution, perform poorly when tested with data from a different distribution. Variations in vision based data can be attributed to the following reasons, viz., differences

The widespread adoption of computer vision models is often constrained by the issue of domain mismatch. Models that are trained with data belonging to one distribution, perform poorly when tested with data from a different distribution. Variations in vision based data can be attributed to the following reasons, viz., differences in image quality (resolution, brightness, occlusion and color), changes in camera perspective, dissimilar backgrounds and an inherent diversity of the samples themselves. Machine learning techniques like transfer learning are employed to adapt computational models across distributions. Domain adaptation is a special case of transfer learning, where knowledge from a source domain is transferred to a target domain in the form of learned models and efficient feature representations.

The dissertation outlines novel domain adaptation approaches across different feature spaces; (i) a linear Support Vector Machine model for domain alignment; (ii) a nonlinear kernel based approach that embeds domain-aligned data for enhanced classification; (iii) a hierarchical model implemented using deep learning, that estimates domain-aligned hash values for the source and target data, and (iv) a proposal for a feature selection technique to reduce cross-domain disparity. These adaptation procedures are tested and validated across a range of computer vision applications like object classification, facial expression recognition, digit recognition, and activity recognition. The dissertation also provides a unique perspective of domain adaptation literature from the point-of-view of linear, nonlinear and hierarchical feature spaces. The dissertation concludes with a discussion on the future directions for research that highlight the role of domain adaptation in an era of rapid advancements in artificial intelligence.
ContributorsDemakethepalli Venkateswara, Hemanth (Author) / Panchanathan, Sethuraman (Thesis advisor) / Li, Baoxin (Committee member) / Davulcu, Hasan (Committee member) / Ye, Jieping (Committee member) / Chakraborty, Shayok (Committee member) / Arizona State University (Publisher)
Created2017
158615-Thumbnail Image.png
Description
In recent years, Convolutional Neural Networks (CNNs) have been widely used in not only the computer vision community but also within the medical imaging community. Specifically, the use of pre-trained CNNs on large-scale datasets (e.g., ImageNet) via transfer learning for a variety of medical imaging applications, has become the de

In recent years, Convolutional Neural Networks (CNNs) have been widely used in not only the computer vision community but also within the medical imaging community. Specifically, the use of pre-trained CNNs on large-scale datasets (e.g., ImageNet) via transfer learning for a variety of medical imaging applications, has become the de facto standard within both communities.

However, to fit the current paradigm, 3D imaging tasks have to be reformulated and solved in 2D, losing rich 3D contextual information. Moreover, pre-trained models on natural images never see any biomedical images and do not have knowledge about anatomical structures present in medical images. To overcome the above limitations, this thesis proposes an image out-painting self-supervised proxy task to develop pre-trained models directly from medical images without utilizing systematic annotations. The idea is to randomly mask an image and train the model to predict the missing region. It is demonstrated that by predicting missing anatomical structures when seeing only parts of the image, the model will learn generic representation yielding better performance on various medical imaging applications via transfer learning.

The extensive experiments demonstrate that the proposed proxy task outperforms training from scratch in six out of seven medical imaging applications covering 2D and 3D classification and segmentation. Moreover, image out-painting proxy task offers competitive performance to state-of-the-art models pre-trained on ImageNet and other self-supervised baselines such as in-painting. Owing to its outstanding performance, out-painting is utilized as one of the self-supervised proxy tasks to provide generic 3D pre-trained models for medical image analysis.
ContributorsSodha, Vatsal Arvindkumar (Author) / Liang, Jianming (Thesis advisor) / Devarakonda, Murthy (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2020