Matching Items (2)
Filtering by

Clear all filters

154763-Thumbnail Image.png
Description
In-situ fatigue damage diagnosis and prognosis is a challenging problem for both metallic and composite materials and structures. There are various uncertainties arising from material properties, component geometries, measurement noise, feature extraction techniques, and modeling errors. It is essential to manage and incorporate these uncertainties in order to achieve accurate

In-situ fatigue damage diagnosis and prognosis is a challenging problem for both metallic and composite materials and structures. There are various uncertainties arising from material properties, component geometries, measurement noise, feature extraction techniques, and modeling errors. It is essential to manage and incorporate these uncertainties in order to achieve accurate damage detection and remaining useful life (RUL) prediction.

The aim of this study is to develop an integrated fatigue damage diagnosis and prognosis framework for both metallic and composite materials. First, Lamb waves are used as the in-situ damage detection technique to interrogate the damaged structures. Both experimental and numerical analysis for the Lamb wave propagation within aluminum are conducted. The RUL of lap joints under variable and constant fatigue loading is predicted using the Bayesian updating by incorporating damage detection information and various sources of uncertainties. Following this, the effect of matrix cracking and delamination in composite laminates on the Lamb wave propagation is investigated and a generalized probabilistic delamination size and location detection framework using Bayesian imaging method (BIM) is proposed and validated using the composite fatigue testing data. The RUL of the open-hole specimen is predicted using the overall stiffness degradation under fatigue loading. Next, the adjoint method-based damage detection framework is proposed considering the physics of heat conduction or elastic wave propagation. Different from the classical wave propagation-based method, the received signal under pristine condition is not necessary for estimating the damage information. This method can be successfully used for arbitrary damage location and shape profiling for any materials with higher accuracy and resolution. Finally, some conclusions and future work are generated based on the current investigation.
ContributorsPeng, Tishun (Author) / Liu, Yongming (Thesis advisor) / Chattopadhyay, Aditi (Committee member) / Mignolet, Marc (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Tang, Pingbo (Committee member) / Arizona State University (Publisher)
Created2016
149301-Thumbnail Image.png
Description
Prognostics and health management (PHM) is a method that permits the reliability of a system to be evaluated in its actual application conditions. This work involved developing a robust system to determine the advent of failure. Using the data from the PHM experiment, a model was developed to estimate the

Prognostics and health management (PHM) is a method that permits the reliability of a system to be evaluated in its actual application conditions. This work involved developing a robust system to determine the advent of failure. Using the data from the PHM experiment, a model was developed to estimate the prognostic features and build a condition based system based on measured prognostics. To enable prognostics, a framework was developed to extract load parameters required for damage assessment from irregular time-load data. As a part of the methodology, a database engine was built to maintain and monitor the experimental data. This framework helps in significant reduction of the time-load data without compromising features that are essential for damage estimation. A failure precursor based approach was used for remaining life prognostics. The developed system has a throughput of 4MB/sec with 90% latency within 100msec. This work hence provides an overview on Prognostic framework survey, Prognostics Framework architecture and design approach with a robust system implementation.
ContributorsVaradarajan, Gayathri (Author) / Liu, Huan (Thesis advisor) / Ye, Jieping (Committee member) / Davalcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2010