Matching Items (3)
Filtering by

Clear all filters

153309-Thumbnail Image.png
Description
Photosystem I (PSI) is a multi-subunit, pigment-protein complex that catalyzes light-driven electron transfer (ET) in its bi-branched reaction center (RC). Recently it was suggested that the initial charge separation (CS) event can take place independently within each ec2/ec3 chlorophyll pair. In order to improve our understanding of this phenomenon, we

Photosystem I (PSI) is a multi-subunit, pigment-protein complex that catalyzes light-driven electron transfer (ET) in its bi-branched reaction center (RC). Recently it was suggested that the initial charge separation (CS) event can take place independently within each ec2/ec3 chlorophyll pair. In order to improve our understanding of this phenomenon, we have generated new mutations in the PsaA and PsaB subunits near the electron transfer cofactor 2 (ec2 chlorophyll). PsaA-Asn604 accepts a hydrogen bond from the water molecule that is the axial ligand of ec2B and the case is similar for PsaB-Asn591 and ec2A. The second set of targeted sites was PsaA-Ala684 and PsaB-Ala664, whose methyl groups are present near ec2A and ec2B, respectively. We generated a number of mutants by targeting the selected protein residues. These mutations were expected to alter the energetics of the primary charge separation event.

The PsaA-A684N mutants exhibited increased ET on the B-branch as compared to the A-branch in both in vivo and in vitro conditions. The transient electron paramagnetic resonance (EPR) spectroscopy revealed the formation of increased B-side radical pair (RP) at ambient and cryogenic temperatures. The ultrafast transient absorption spectroscopy and fluorescence decay measurement of the PsaA-A684N and PsaB-A664N showed a slight deceleration of energy trapping. Thus making mutations near ec2 on each branch resulted into modulation of the charge separation process. In the second set of mutants, where ec2 cofactor was target by substitution of PsaA-Asn604 or PsaB-Asn591 to other amino acids, a drop in energy trapping was observed. The quantum yield of CS decreases in Asn to Leu and His mutants on the respective branch. The P700 triplet state was not observed at room and cryogenic temperature for these mutants, nor was a rapid decay of P700+ in the nanosecond timescale, indicating that the mutations do not cause a blockage of electron transfer from the ec3 Chl. Time-resolved fluorescence results showed a decrease in the lifetime of the energy trapping. We interpret this decrease in lifetime as a new channel of excitation energy decay, in which the untrapped energy dissipates as heat through a fast internal conversion process. Thus, a variety of spectroscopic measurements of PSI with point mutations near the ec2 cofactor further support that the ec2 cofactor is involved in energy trapping process.
ContributorsBadshah, Syed Lal (Author) / Redding, Kevin E (Thesis advisor) / Fromme, Petra (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2014
156739-Thumbnail Image.png
Description
Rubisco activase (Rca) from higher plants is a stromal ATPase essential for reactivating Rubiscos rendered catalytically inactive by endogenous inhibitors. Rca’s functional state is thought to consist of ring-like hexameric assemblies, similar to other members of the AAA+ protein superfamily. However, unlike other members, it does not form obligate hexamers

Rubisco activase (Rca) from higher plants is a stromal ATPase essential for reactivating Rubiscos rendered catalytically inactive by endogenous inhibitors. Rca’s functional state is thought to consist of ring-like hexameric assemblies, similar to other members of the AAA+ protein superfamily. However, unlike other members, it does not form obligate hexamers and is quite polydisperse in solution, making elucidation of its self-association pathway challenging. This polydispersity also makes interpretation of traditional biochemical approaches difficult, prompting use of a fluorescence-based technique (Fluorescence Correlation Spectroscopy) to investigate the relationship between quaternary structure and function. Like cotton β Rca, tobacco β Rca appears to assemble in a step-wise and nucleotide-dependent manner. Incubation in varying nucleotides appears to alter the equilibrium between varying oligomers, either promoting or minimizing the formation of larger oligomers. High concentrations of ADP seem to favor continuous assembly towards larger oligomers, while assembly in the presence of ATP-yS (an ATP analog) appears to halt continuous assembly in favor of hexameric species. In contrast, assembly in the “Active ATP Turnover” condition (a mixture of ATP and ADP) appears to favor an almost equal distribution of tetramer and hexamer, which when compared with ATPase activity, shows great alignment with maximum activity in the low µM range. Despite this alignment, the decrease in ATPase activity does not follow any particular oligomer, but rather decreases with increasing aggregation, suggesting that assembly dynamics may regulate ATPase activity, rather than the formation/disappearance of one specific oligomer. Work presented here also indicates that all oligomers larger than hexamers are catalytically inactive, thus providing support for the idea that they may serve as a storage mechanism to minimize wasteful hydrolysis. These findings are also supported by assembly work carried out on an Assembly Mutant (R294V), known for favoring formation of closed-ring hexamers. Similar assembly studies were carried out on spinach Rca, however, due to its aggregation propensity, FCS results were more difficult to interpret. Based on these findings, one could argue that assembly dynamics are essential for Rca function, both in ATPase and in regulation of Rubisco carboxylation activity, thus providing a rational for Rca’s high degree of polydispersity.
ContributorsSerban, Andrew J (Author) / Wachter, Rebekka M. (Thesis advisor) / Levitus, Marcia (Thesis advisor) / Redding, Kevin E (Committee member) / Van Horn, Wade D (Committee member) / Arizona State University (Publisher)
Created2018
148452-Thumbnail Image.png
Description

Due to the COVID-19 pandemic, declared in March of 2020, there have been many lifestyle changes which have likely influenced tobacco smoking behavior. Such lifestyle changes include lockdowns, stay at home orders, reduction in social cues related to smoking, increased stress, and boredom among other things. This study utilized a

Due to the COVID-19 pandemic, declared in March of 2020, there have been many lifestyle changes which have likely influenced tobacco smoking behavior. Such lifestyle changes include lockdowns, stay at home orders, reduction in social cues related to smoking, increased stress, and boredom among other things. This study utilized a cross-sectional survey which looked into these behaviors, primarily perceived risk to COVID-19, and determined if there is an association between perceived risk and education level/race. Education level is a proxy for income and material resources, therefore making it more likely that people with lower levels of education have fewer resources and higher perceived risk to negative effects of COVID-19. Additionally, people of color are often marginalized in the medical community along with being the target of heavy advertising by tobacco companies which have likely impacted risk to COVID-19 as well.

ContributorsLodha, Pratishtha (Author) / Leischow, J. Scott (Thesis director) / Pearson, Jennifer (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05