Matching Items (5)
Filtering by

Clear all filters

152226-Thumbnail Image.png
Description
Farmers' markets are a growing trend both in Arizona and the broader U.S., as many recognize them as desirable alternatives to the conventional food system. As icons of sustainability, farmers' markets are touted as providing many environmental, social, and economic benefits, but evidence is mounting that local food systems primarily

Farmers' markets are a growing trend both in Arizona and the broader U.S., as many recognize them as desirable alternatives to the conventional food system. As icons of sustainability, farmers' markets are touted as providing many environmental, social, and economic benefits, but evidence is mounting that local food systems primarily serve the urban elite, with relatively few low-income or minority customers. However, the economic needs of the market and its vendors often conflict with those of consumers. While consumers require affordable food, farmers need to make a profit. How farmers' markets are designed and governed can significantly influence the extent to which they can meet these needs. However, very little research explores farmers' market design and governance, much less its capacity to influence financial success and participation for underprivileged consumers. The present study examined this research gap by addressing the following research question: How can farmers' markets be institutionally designed to increase the participation of underprivileged consumers while maintaining a financially viable market for local farmers? Through a comparative case study of six markets, this research explored the extent to which farmers' markets in Central Arizona currently serve the needs of farmer-vendors and underprivileged consumers. The findings suggest that while the markets serve as a substantial source of income for some vendors, participation by low-income and minority consumers remains low, and that much of this appears to be due to cultural barriers to access. Management structures, site characteristics, market layout, community programs, and staffing policies are key institutional design features, and the study explores how these can be leveraged to better meet the needs of the diverse participants while improving the markets' financial success.
ContributorsTaylor, Carissa (Author) / Aggarwal, Rimjhim (Thesis advisor) / York, Abigail (Committee member) / Wharton, Christopher (Christopher Mack), 1977- (Committee member) / Arizona State University (Publisher)
Created2013
153519-Thumbnail Image.png
Description
Advancing sustainable food systems requires holistic understanding and solutions-oriented approaches that transcend disciplines, so expertise in a variety of subjects is necessary. Proposed solutions are usually technically or socially oriented, but disagreement over the best approach to the future of food dominates the dialogue. Technological optimists argue that scientific advances

Advancing sustainable food systems requires holistic understanding and solutions-oriented approaches that transcend disciplines, so expertise in a variety of subjects is necessary. Proposed solutions are usually technically or socially oriented, but disagreement over the best approach to the future of food dominates the dialogue. Technological optimists argue that scientific advances are necessary to feed the world, but environmental purists believe that reductions in consumption and waste are sufficient and less risky. Life cycle assessment (LCA) helps resolve debates through quantitative analysis of environmental impacts from products which serve the same function. LCA used to compare dietary choices reveals that simple plant-based diets are better for the environment than diets that include animal products. However, analysis of soy protein isolate (SPI) demonstrates that certain plant-based proteins may be less preferable for the environment than some unprocessed meats in several categories due to additional impacts that come from industrial processing. LCAs' focus on production risks ignoring consumers, but the food system exists to serve consumers, who can be major drivers of change. Therefore, the path to a sustainable food system requires addressing consumption issues as well. Existing methods for advancing sustainable food systems that equate more information with better behavior or performance are insufficient to create change. Addressing food system issues requires sufficient tacit knowledge to understand how arguments are framed, what the supporting content is, the findings of primary sources, and complex and controversial dialogue surrounding innovations and interventions for food system sustainability. This level of expertise is called interactional competence and it is necessary to drive and maintain holistic progress towards sustainability. Development strategies for interactional competence are informed by studying the motivations and strategies utilized by vegans. A new methodology helps advance understanding of expertise development by assessing levels of expertise and reveals insights into how vegans maintain commitment to a principle that influences their daily lives. The study of veganism and expertise reveals that while providing information to debunk fallacies is important, the development of tacit knowledge is fundamental to advance to a stage of competence.
ContributorsBerardy, Andrew (Author) / Seager, Thomas P (Thesis advisor) / Hannah, Mark (Committee member) / Costello, Christine (Committee member) / Landis, Amy (Committee member) / Wharton, Christopher (Christopher Mack), 1977- (Committee member) / Arizona State University (Publisher)
Created2015
155028-Thumbnail Image.png
Description
Mobile healthy food retailers are a novel alleviation technique to address disparities in access to urban produce stores in food desert communities. Such retailers, which tend to exclusively stock produce items, have become significantly more popular in the past decade, but many are unable to achieve economic sustainability. Therefore, when

Mobile healthy food retailers are a novel alleviation technique to address disparities in access to urban produce stores in food desert communities. Such retailers, which tend to exclusively stock produce items, have become significantly more popular in the past decade, but many are unable to achieve economic sustainability. Therefore, when local and federal grants and scholarships are no longer available for a mobile food retailer, they must stop operating which poses serious health risks to consumers who rely on their services.

To address these issues, a framework was established in this dissertation to aid mobile food retailers with reaching economic sustainability by addressing two key operational decisions. The first decision was the stocked product mix of the mobile retailer. In this problem, it was assumed that mobile retailers want to balance the health, consumer cost, and retailer profitability of their product mix. The second investigated decision was the scheduling and routing plan of the mobile retailer. In this problem, it was assumed that mobile retailers operate similarly to traditional distribution vehicles with the exception that their customers are willing to travel between service locations so long as they are in close proximity.

For each of these problems, multiple formulations were developed which address many of the nuances for most existing mobile food retailers. For each problem, a combination of exact and heuristic solution procedures were developed with many utilizing software independent methodologies as it was assumed that mobile retailers would not have access to advanced computational software. Extensive computational tests were performed on these algorithm with the findings demonstrating the advantages of the developed procedures over other algorithms and commercial software.

The applicability of these techniques to mobile food retailers was demonstrated through a case study on a local Phoenix, AZ mobile retailer. Both the product mix and routing of the retailer were evaluated using the developed tools under a variety of conditions and assumptions. The results from this study clearly demonstrate that improved decision making can result in improved profits and longitudinal sustainability for the Phoenix mobile food retailer and similar entities.
ContributorsWishon, Christopher John (Author) / Villalobos, Rene (Thesis advisor) / Fowler, John (Committee member) / Mirchandani, Pitu (Committee member) / Wharton, Christopher (Christopher Mack), 1977- (Committee member) / Arizona State University (Publisher)
Created2016
Description

Phoenix is the sixth most populated city in the United States and the 12th largest metropolitan area by population, with about 4.4 million people. As the region continues to grow, the demand for housing and jobs within the metropolitan area is projected to rise under uncertain climate conditions.

Undergraduate and graduate

Phoenix is the sixth most populated city in the United States and the 12th largest metropolitan area by population, with about 4.4 million people. As the region continues to grow, the demand for housing and jobs within the metropolitan area is projected to rise under uncertain climate conditions.

Undergraduate and graduate students from Engineering, Sustainability, and Urban Planning in ASU’s Urban Infrastructure Anatomy and Sustainable Development course evaluated the water, energy, and infrastructure changes that result from smart growth in Phoenix, Arizona. The Maricopa Association of Government's Sustainable Transportation and Land Use Integration Study identified a market for 485,000 residential dwelling units in the urban core. Household water and energy use changes, changes in infrastructure needs, and financial and economic savings are assessed along with associated energy use and greenhouse gas emissions.

The course project has produced data on sustainable development in Phoenix and the findings will be made available through ASU’s Urban Sustainability Lab.

ContributorsNahlik, Matthew (Author) / Chester, Mikhail Vin (Author) / Andrade, Luis (Author) / Archer, Melissa (Author) / Barnes, Elizabeth (Author) / Beguelin, Maria (Author) / Bonilla, Luis (Author) / Bubenheim, Stephanie (Author) / Burillo, Daniel (Author) / Cano, Alex (Author) / Guiley, Keith (Author) / Hamad, Moayyad (Author) / Heck, John (Author) / Helble, Parker (Author) / Hsu, Will (Author) / Jensen, Tate (Author) / Kannappan, Babu (Author) / Kirtley, Kelley (Author) / LaGrou, Nick (Author) / Loeber, Jessica (Author) / Mann, Chelsea (Author) / Monk, Shawn (Author) / Paniagua, Jaime (Author) / Prasad, Saransh (Author) / Stafford, Nicholas (Author) / Unger, Scott (Author) / Volo, Tom (Author) / Watson, Mathew (Author) / Woodruff, Abbie (Author) / Arizona State University. School of Sustainable Engineering and the Built Environment (Contributor) / Arizona State University. Center for Earth Systems Engineering and Management (Contributor)
Description

This LCA used data from a previous LCA done by Chester and Horvath (2012) on the proposed California High Speed Rail, and furthered the LCA to look into potential changes that can be made to the proposed CAHSR to be more resilient to climate change. This LCA focused on the

This LCA used data from a previous LCA done by Chester and Horvath (2012) on the proposed California High Speed Rail, and furthered the LCA to look into potential changes that can be made to the proposed CAHSR to be more resilient to climate change. This LCA focused on the energy, cost, and GHG emissions associated with raising the track, adding fly ash to the concrete mixture in place of a percentage of cement, and running the HSR on solar electricity rather than the current electricity mix. Data was collected from a variety of sources including other LCAs, research studies, feasibility studies, and project information from companies, agencies, and researchers in order to determine what the cost, energy requirements, and associated GHG emissions would be for each of these changes. This data was then used to calculate results of cost, energy, and GHG emissions for the three different changes. The results show that the greatest source of cost is the raised track (Design/Construction Phase), and the greatest source of GHG emissions is the concrete (also Design/Construction Phase).

Created2014-06-13