Matching Items (2)

148176-Thumbnail Image.png

Using twitter to examine animal sightings in urban areas during COVID-19 shut-downs during 2020

Description

In this project, I examined the relationship between lockdowns implemented by COVID-19 and the activity of animals in urban areas. I hypothesized that animals became more active in urban areas

In this project, I examined the relationship between lockdowns implemented by COVID-19 and the activity of animals in urban areas. I hypothesized that animals became more active in urban areas during COVID-19 quarantine than they were before and I wanted to see if my hypothesis could be researched through Twitter crowdsourcing. I began by collecting tweets using python code, but upon examining all data output from code-based searches, I concluded that it is quicker and more efficient to use the advanced search on Twitter website. Based on my research, I can neither confirm nor deny if the appearance of wild animals is due to the COVID-19 lockdowns. However, I was able to discover a correlational relationship between these two factors in some research cases. Although my findings are mixed with regard to my original hypothesis, the impact that this phenomenon had on society cannot be denied.

Contributors

Agent

Created

Date Created
  • 2021-05

152574-Thumbnail Image.png

On the dynamics of infectious diseases in modern landscapes: urban settings and drug resistance

Description

Extraordinary medical advances have led to significant reductions in the burden of infectious diseases in humans. However, infectious diseases still account for more than 13 million annual deaths. This large

Extraordinary medical advances have led to significant reductions in the burden of infectious diseases in humans. However, infectious diseases still account for more than 13 million annual deaths. This large burden is partly due to some pathogens having found suitable conditions to emerge and spread in denser and more connected host populations, and others having evolved to escape the pressures imposed by the rampant use of antimicrobials. It is then critical to improve our understanding of how diseases spread in these modern landscapes, characterized by new host population structures and socio-economic environments, as well as containment measures such as the deployment of drugs. Thus, the motivation of this dissertation is two-fold. First, we study, using both data-driven and modeling approaches, the the spread of infectious diseases in urban areas. As a case study, we use confirmed-cases data on sexually transmitted diseases (STDs) in the United States to assess the conduciveness of population size of urban areas and their socio-economic characteristics as predictors of STD incidence. We find that the scaling of STD incidence in cities is superlinear, and that the percent of African-Americans residing in cities largely determines these statistical patterns. Since disparities in access to health care are often exacerbated in urban areas, within this project we also develop two modeling frameworks to study the effect of health care disparities on epidemic outcomes. Discrepant results between the two approaches indicate that knowledge of the shape of the recovery period distribution, not just its mean and variance, is key for assessing the epidemiological impact of inequalities. The second project proposes to study, from a modeling perspective, the spread of drug resistance in human populations featuring vital dynamics, stochasticity and contact structure. We derive effective treatment regimes that minimize both the overall disease burden and the spread of resistance. Additionally, targeted treatment in structured host populations may lead to higher levels of drug resistance, and if drug-resistant strains are compensated, they can spread widely even when the wild-type strain is below its epidemic threshold.

Contributors

Agent

Created

Date Created
  • 2014