Matching Items (4)
Filtering by

Clear all filters

148319-Thumbnail Image.png
Description

Urologic diseases interstitial cystitis (IC), overactive bladder (OAB), and urinary tract infection (UTI) affect tens of millions of people per year in the US alone. The human microbiome consists of a diverse community of bacteria (bacteriome) and viruses (virome) harbored in each individual that contributes to health and disease. Little

Urologic diseases interstitial cystitis (IC), overactive bladder (OAB), and urinary tract infection (UTI) affect tens of millions of people per year in the US alone. The human microbiome consists of a diverse community of bacteria (bacteriome) and viruses (virome) harbored in each individual that contributes to health and disease. Little is known about how the microbiome impacts urinary disorders. Using next-generation metagenomic sequencing, we characterized the urinary bacteriome and virome of patients with urinary disorders (IC, OAB, and UTI) and healthy controls. We show that the bacteriome was distinctly altered in patients by their respective urinary disorder. IC was characterized by a distinct prevalence of the genus Lactobacillus, while OAB was characterized by the genus Bacteroides, and UTI was characterized by Comamonas. IC, OAB, and UTI all also had significantly differed virome profiles from healthy individuals. In particular, we found that Lactobacillus phages were significantly associated with IC and Corynebacterium virus was associated with UTI samples, meanwhile no particular virus was correlated with OAB samples. Overall, we show that changes in the urinary microbiome are associated with incidence and spectrum of urinary diseases. These findings could lead to new microbiome modalities of treatment.

ContributorsBains, Ajeet (Author) / Lim, Efrem (Thesis director) / Zhu, Qiyun (Committee member) / Kaelin, Emily (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148016-Thumbnail Image.png
Description

The microbiome and the immune system are known to work in conjunction to modulate the clearance of pathogens and tolerance of beneficial microbes. A growing area of research seeks to study the potential extent of the involvement of the microbiome in modulating and supporting the immune system during acute allograft

The microbiome and the immune system are known to work in conjunction to modulate the clearance of pathogens and tolerance of beneficial microbes. A growing area of research seeks to study the potential extent of the involvement of the microbiome in modulating and supporting the immune system during acute allograft rejection. It has been hypothesized that the localized microbiota in each organ produce metabolites that instigate inflammatory immune responses, but whether microbiota interactions precipitate acute allograft rejection is unknown. Therefore, this study focuses on microbiome shifts in the gut and kidney after inducing acute renal transplant rejection in order to implicate gut dysbiosis as a precursor or supporter of allograft rejection. This study also subsequently explores the use of an immune-modulating protein in order to determine differences in the outcome of transplant rejection and potential differences in intestinal microbial load. This experiment sought to induce rejection in BALB/c mice through the use of C57BL/6 mouse renal slivers. Microbiome abundance was analyzed in all experimental groups. Understanding the role of the microbiome in transplant rejection has vast clinical implications and has the potential to enhance pre- and post-operative treatment, and immune management and quality of life following organ transplant.

ContributorsKokott, Kristiana Tara (Author) / Lim, Efrem (Thesis director) / Lucas, Alexandra (Committee member) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The microbiome and virome are known to interact within the human body which in turn modulates the health and disease of an individual. While these interactions have been largely studied in bodily sites such as the gastrointestinal tract, the microbiome and virome of the female genital tract (FGT) remains largely

The microbiome and virome are known to interact within the human body which in turn modulates the health and disease of an individual. While these interactions have been largely studied in bodily sites such as the gastrointestinal tract, the microbiome and virome of the female genital tract (FGT) remains largely understudied. Within the virome exists DNA and RNA viruses which are known to infect both eukaryotes and prokaryotes. While existing virome research within the FGT has focused largely on eukaryote infecting viruses, a large proportion of the virome consists of uncharacterized bacteriophages known as “dark matter”. Due to the lack of a specific gene marker for viruses, which is essential in qPCR quantification of other populations such as bacteria, determination of viral abundance and virome characterization has been limited. However, the staining of viral DNA has been found effective in visualizing and enumerating virus-like particles within various specimens. In this study, we seek to determine viral abundance within the FGT utilizing SYBR Gold nucleic acid stain to visualize VLP present within a cohort of cervicovaginal lavage (CVL) samples. Given these results we intend to draw conclusions regarding the interactions between the FGT virome and viral abundance as well as sexual-reproductive health. Understanding the complex relationship of the virome within the female reproductive tract is likely to have remarkable clinical implications and has the potential to progress both the diagnostic and treatment aspects of female sexual and reproductive health.

ContributorsFredenberg, Mara (Author) / Lim, Efrem (Thesis director) / Kaelin, Emily (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor)
Created2023-05
193032-Thumbnail Image.png
Description
Metagenomics is the study of the structure and function of microbial communities through the application of the whole-genome shotgun (WGS) sequencing method. Providing high-resolution community profiles at species or even strain levels, metagenomics points to a new direction for microbiome research in understanding microbial gene function, microbial-microbial interactions, and host-microbe

Metagenomics is the study of the structure and function of microbial communities through the application of the whole-genome shotgun (WGS) sequencing method. Providing high-resolution community profiles at species or even strain levels, metagenomics points to a new direction for microbiome research in understanding microbial gene function, microbial-microbial interactions, and host-microbe interactions. My thesis work includes innovation in metagenomic research through the application of ChatGPT in assisting beginning researchers, adopt pre-existed alpha diversity metric for metagenomic data to improve diversity calculation, and the application of metagenomic data in Alzheimer’s disease research.Since the release of ChatGPT in March 2023, the conversation regarding AI in research has promptly been debated. Through the prompted bioinformatic case study, I demonstrate the application of ChatGPT in conducting metagenomic analysis. I constructed and tested a working pipeline aimed at instructing GPT in completing shotgun metagenomic research. The pipeline includes instructions for various essential analytic steps: quality controls, host filtering, read classification, abundance estimation, diversity calculation, and data visualization. The pipeline demonstrated successful completion and reproducible results. Alpha diversity measurement is critical to understanding microbiomes. The widely used Faith’s phylogenetic diversity (PD) metric is agnostic of feature abundance and, therefore, falls short of analyzing metagenomic data. BWPDθ, an abundance weighted variant of Faith’s PD, was implemented in scikit-bio alpha diversity metrics. My analysis shows that BWPDθ does have better performance compared to Faith’s PD, revealing more biological significance, and maintaining their robustness at a lower sampling depth. The progression of Alzheimer’s disease (AD) is known to be associated with alterations in the patient’s gut microbiome. Utilizing metagenomic data from the AlzBiom study, I explored the differential abundance of bacterial pncA genes among healthy and AD participants by age group. The analysis showed that there was no significant difference in pncA abundance between the healthy and AD patients. However, when stratified by age group, within the age group 64 to 69, AD was shown to have significantly lower pncA abundance than the healthy control group. The Pearson's test showed a moderate positive association between age and pncA abundance.
ContributorsXing, Zhu (Author) / Zhu, Qiyun (Thesis advisor) / Lim, Efrem (Committee member) / Snyder-Mackler, Noah (Committee member) / Arizona State University (Publisher)
Created2024