Matching Items (3)
Filtering by

Clear all filters

157209-Thumbnail Image.png
Description
Introduction: Cystic fibrosis (CF) is the most common life-shortening autosomal recessive genetic disease affecting Caucasians. The disease is characterized by a dysfunctional cystic fibrosis transmembrane regulator (CFTR) protein and aberrant mucus accumulation that subsequently alters the physicochemical environment in numerous organ systems. These mucosal perturbations have been associated with inflammation

Introduction: Cystic fibrosis (CF) is the most common life-shortening autosomal recessive genetic disease affecting Caucasians. The disease is characterized by a dysfunctional cystic fibrosis transmembrane regulator (CFTR) protein and aberrant mucus accumulation that subsequently alters the physicochemical environment in numerous organ systems. These mucosal perturbations have been associated with inflammation and microbial dysbiosis, most notably in the lungs and gastrointestinal (GI) tract. Genistein, a soy isoflavone and dietary polyphenol, has been shown to modulate CFTR function in cell cultures and murine models, as well exert sex-dependent improvement of survival rates in a CF mouse model. However, it is unknown whether dietary genistein affects gut microbiome diversity and community structure in cystic fibrosis. This study sought to examine associations between dietary genistein treatment and gut microbiome diversity and community structure in a murine model of CF. Methods: Twenty-four male and female mice homozygous for the DF508 CFTR gene mutation were maintained on one of three diet regimens for a 45-day period (n=11, standard chow; n=7, Colyte-treated water and standard chow; n=6, 600 mg dietary genistein per kg body weight). One fecal pellet was collected per mouse post-treatment, and microbial genomic DNA was extracted from the fecal samples, quantified, amplified, and sequenced on the Illumina MiSeq platform. QIIME 2 was used to conduct alpha- and beta-diversity analyses on all samples. Results: Measures of alpha-diversity were significantly decreased in the dietary genistein group as compared to either standard chow or Colyte groups. Measures of beta-diversity showed that community structure differed significantly between dietary treatment groups; these differences were further illustrated by distinct clustering of taxa as shown by principal coordinates analysis plots. Conclusion: This 3-arm parallel experimental study showed that dietary genistein treatment was associated with decreased microbial diversity and differences in microbial community structure in DF508 mice.
ContributorsArgo, Katy Bryana (Author) / Whisner, Corrie M (Thesis advisor) / Al-Nakkash, Layla (Committee member) / Sweazea, Karen L (Committee member) / Arizona State University (Publisher)
Created2019
155673-Thumbnail Image.png
Description
The transition to college has been identified as a vulnerable period for weight gain and the onset of obesity. Research has shown that the gut microbiota is different in obese compared to lean individuals, but a period of weight gain has never been studied in free-living individuals. The objective of

The transition to college has been identified as a vulnerable period for weight gain and the onset of obesity. Research has shown that the gut microbiota is different in obese compared to lean individuals, but a period of weight gain has never been studied in free-living individuals. The objective of this longitudinal, observational study was to assess the association between changes in the intestinal microbiota and weight-related outcomes in healthy college students living in on-campus dormitories at Arizona State University (n=39). Anthropometric measures and fecal samples were collected at the beginning and end of the school year, and microbial relative abundance for A. muciniphila, F. prausnitzii, R. gnavus, and L. acidophilus was measured through qPCR analyses. In this population, body mass index (BMI) and waist circumference (WC) increased by 0.97 ± 1.28 kg/m2 and 2.64 ± 4.90 cm, respectively. Wilcoxon-Rank tests revealed that R. gnavus fold change was significantly different between groups of weight loss/maintenance and weight gain ≥ 5% body weight (0.14 [-0.21, 0.64], n=24 vs. -0.14 [-0.92, 0.05], n=15, respectively; p=0.028). Correlation analyses suggested a significant negative association between A. muciniphila fold change and both % WC change and % BMI change (r= -0.66; p<0.01 and r= -0.33; p=0.04, respectively). However, multivariate regression analysis controlling for sex and race/ethnicity showed a significant association between A. muciniphila and % WC change, but not % BMI change (R2= 0.53; p<0.01 and R2= 0.24; p=0.15). F. prausnitzii was not associated with weight-related outcomes in this sample. L. acidophilus was excluded from study analyses after subsequent qPCR trials revealed no amplification in participant samples. Overall, this was the first study to show a relationship between A. muciniphila fold change and weight-related outcomes over a period of weight gain. Specifically, A. muciniphila was strongly negatively associated with WC in this sample. Further research is needed to more accurately describe these associations and potential mechanisms associated with the shift in gut microbiota observed with weight gain. Findings from future research may be used to develop interventions for college students aiming to shift the gut microbiota to prevent weight gain.
ContributorsJourney, Elizabeth (Author) / Whisner, Corrie M (Thesis advisor) / Bruening, Meredith (Committee member) / Sweazea, Karen (Committee member) / Arizona State University (Publisher)
Created2017
154385-Thumbnail Image.png
Description
Low income, pregnant adolescents have an increased risk of adverse pregnancy outcomes, such as preterm birth, delivery of low birth weight babies and excessive gestational weight gain that increases the risk of postpartum overweight and obesity. Inadequate dietary intake is a modifiable risk factor that may differentially impact maternal health

Low income, pregnant adolescents have an increased risk of adverse pregnancy outcomes, such as preterm birth, delivery of low birth weight babies and excessive gestational weight gain that increases the risk of postpartum overweight and obesity. Inadequate dietary intake is a modifiable risk factor that may differentially impact maternal health and fetal outcomes for pregnant adults and adolescents. To evaluate the effectiveness of a social media intervention on improving prenatal health knowledge and dietary intake, 22 racially diverse pregnant women (59% Black and 36% White) were recruited and adolescent (n=10) outcomes compared to those of adults (n=12) across the intervention. Pre- and post-intervention nutrition knowledge questionnaires and diet recalls were completed to assess nutrition knowledge and dietary intake. When assessing dietary change across the intervention, significant decreases in fat (pre vs. post, 97.9 ± 0.2 g vs. 90.2 ± 0.2 g, P=0.047) and folate intake (pre vs. post, 537.6 ± 0.3 μg vs. 531.2 ± 0.2 μg, P=0.041) were observed while significant increases in carbohydrate (pre vs. post, 318.9 ± 0.2 g vs. 335.9 ± 0.2 g, P<0.001), calcium (pre vs. post, 851.3 ± 0.3 mg vs. 893.5 ± 0.2 mg, P<0.001) and magnesium intakes (pre vs. post, 212.9 ± 0.2 mg vs. 227.8 ± 0.2 mg, P<0.001) occurred. These time effects occurred independent of group (adolescents vs. adults) as time*group interactions were not significant (p>0.05) with the exception of sugar intake. Increases in sugar intake across the intervention were greater among the adolescent group (adolescent vs. adult, 7.9 ± 0.2 g vs. 6.0 ± 0.2 g, P=0.023). Overall nutrition knowledge was limited and confusion regarding MyPlate recommendations persisted. The inadequate dietary behaviors observed suggest that future interventions should focus education on specific dietary nutrients such as added sugars and fiber to improve dietary intakes. The best way to actively engage pregnant adolescents is unknown: however, social media has the potential to reach teens and low-income women with education that may be key in allowing interventions to change dietary habits and behaviors.
ContributorsEllis, Megan (Author) / Whisner, Corrie M (Thesis advisor) / Bruening, Meg (Committee member) / Vega-Lopez, Sonia (Committee member) / Arizona State University (Publisher)
Created2016