Matching Items (4)
149330-Thumbnail Image.png
Description
Enzymes which regulate the metabolic reactions for sustaining all living things, are the engines of life. The discovery of molecules that are able to control enzyme activity is of great interest for therapeutics and the biocatalysis industry. Peptides are promising enzyme modulators due to their large chemical diversity and the

Enzymes which regulate the metabolic reactions for sustaining all living things, are the engines of life. The discovery of molecules that are able to control enzyme activity is of great interest for therapeutics and the biocatalysis industry. Peptides are promising enzyme modulators due to their large chemical diversity and the existence of well-established methods for library synthesis. Microarrays represent a powerful tool for screening thousands of molecules, on a small chip, for candidates that interact with enzymes and modulate their functions. In this work, a method is presented for screening high-density arrays to discover peptides that bind and modulate enzyme activity. A viscous polyvinyl alcohol (PVA) solution was applied to array surfaces to limit the diffusion of product molecules released from enzymatic reactions, allowing the simultaneous measurement of enzyme activity and binding at each peptide feature. For proof of concept, it was possible to identify peptides that bound to horseradish peroxidase (HRP), alkaline phosphatase (APase) and â-galactosidase (â-Gal) and substantially alter their activities by comparing the peptide-enzyme binding levels and bound enzyme activity on microarrays. Several peptides, selected from microarrays, were able to inhibit â-Gal in solution, which demonstrates that behaviors selected from surfaces often transfer to solution. A mechanistic study of inhibition revealed that some of the selected peptides inhibited enzyme activity by binding to enzymes and inducing aggregation. PVA-coated peptide slides can be rapidly analyzed, given an appropriate enzyme assay, and they may also be assayed under various conditions (such as temperature, pH and solvent). I have developed a general method to discover molecules that modulate enzyme activity at desired conditions. As demonstrations, some peptides were able to promote the thermal stability of bound enzyme, which were selected by performing the microarray-based enzyme assay at high temperature. For broad applications, selected peptide ligands were used to immobilize enzymes on solid surfaces. Compared to conventional methods, enzymes immobilized on peptide-modified surfaces exhibited higher specific activities and stabilities. Peptide-modified surfaces may prove useful for immobilizing enzymes on surfaces with optimized orientation, location and performance, which are of great interest to the biocatalysis industry.
ContributorsFu, Jinglin (Author) / Woodbury, Neal W (Thesis advisor) / Johnston, Stephen A. (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2010
147965-Thumbnail Image.png
Description

The use of enzyme-catalyst interfaces is underexplored in the field of biocatalysis, particularly in studies on enabling novel reactivity of enzymes. For this thesis, the HaloTag® protein tagging platform was proposed as a bioconjugation method for a pinacol coupling reaction using lipases, as a model for novel reactivities proceeding via

The use of enzyme-catalyst interfaces is underexplored in the field of biocatalysis, particularly in studies on enabling novel reactivity of enzymes. For this thesis, the HaloTag® protein tagging platform was proposed as a bioconjugation method for a pinacol coupling reaction using lipases, as a model for novel reactivities proceeding via ketyl radical intermediates and hydrogen-bonding-facilitated redox attenuation. After an initial lipase screening of 9 lipases, one lipase (Candida rugosa) was found to perform the pinacol coupling of p-anisaldehyde under standard conditions (fluorescein and 530nm light, 3% yield). Based on a retrosynthetic analysis for the photocatalyst-incorporated HaloTag® linker, the intermediates haloamine 1 and aldehyde 6 were synthesized. Further experiments are underway or planned to complete linker synthesis and conduct pinacol coupling experiments with a bioconjugated system. This project underscores the promising biocatalytic promiscuity of lipases for performing reactions proceeding through ketyl radical intermediates, as well as the underdeveloped potential of incorporating bioengineering principles like bioconjugation into biocatalysis to overcome kinetic barriers to electron transfer and optimize biocatalytic reactions.

ContributorsMcrae, Kenna Christine (Author) / Biegasiewicz, Kyle (Thesis director) / Ghirlanda, Giovanna (Committee member) / Moore, Ana (Committee member) / Department of Physics (Contributor) / School of Human Evolution & Social Change (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Despite comprising a variety of bioactive compounds that can be utilized as effective synthetic precursors, the construction of halogenated arenes often relies on hazardous reagents and conditions that pose regioselectivity issues in complex systems. Halodecarboxylation using vanadium-dependent haloperoxidases (VHPOs) has emerged as a sustainable alternative for the synthesis of halogenated

Despite comprising a variety of bioactive compounds that can be utilized as effective synthetic precursors, the construction of halogenated arenes often relies on hazardous reagents and conditions that pose regioselectivity issues in complex systems. Halodecarboxylation using vanadium-dependent haloperoxidases (VHPOs) has emerged as a sustainable alternative for the synthesis of halogenated arenes. In the Biegasiewicz group, we recently discovered that VHPOs can furnish 3-bromooxindoles from 3-carboxyindoles through a decarboxylation event, followed by oxidation. While this tandem process was exciting, the intermediates of this process, 3- bromoindoles are independently valuable reagents, which necessitated further investigation. Herein we examine the biocatalytic access to bromoindoles for which we addressed the major challenge of undesired oxidation event. The first preventative approach acylated the indole nitrogen, resulting in 1-acetylindole-3-CO2H. This could then be subjected to optimized enzymatic bromination conditions to produce 1-acetyl-3-bromoindole in 98% yield with CiVCPO. The second preventative approach was to modify the reaction conditions, furnishing 1-methyl-3-bromoindole in 73% yield from 1-methylindole-3- CO2H with AmVBPO.

ContributorsLee, Hyung Ji (Author) / Biegasiewicz, Kyle (Thesis director) / Ackerman-Biegasiewicz, Laura (Committee member) / Seo, Dong-Kyun (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
Description

The development of novel aqueous cross-coupling strategies has emerged as a rapidly expanding area of research within organic synthesis. However, many of these cross-coupling reactions require the pre-formation of an organohalide substrate, which often involves toxic halogenating reagents and harsh reaction conditions. This work details the development of a tandem

The development of novel aqueous cross-coupling strategies has emerged as a rapidly expanding area of research within organic synthesis. However, many of these cross-coupling reactions require the pre-formation of an organohalide substrate, which often involves toxic halogenating reagents and harsh reaction conditions. This work details the development of a tandem halogenation/cross-coupling procedure in which an electron-rich arene or heteroarene is brominated through an enzymatic halogenation reaction catalyzed by a vanadium dependent haloperoxidase (VHPO) and then used without workup in a subsequent aqueous Suzuki cross-coupling reaction. This sequential process allows the arylated product to be accessed in a single pot from the unfunctionalized substrate via the brominated intermediate. Optimization of the enzymatic halogenation step was performed for three different substrates, resulting in the discovery of conditions for the bromination of 2,3-dihydrobenzofuran, chromane, and anisole in high yield (>95%). The scope of the reaction was then investigated for a range of electron-rich arene and heteroarene substrates. Next, Suzuki cross-coupling conditions were developed in a reaction mixture of pH 5 citrate buffer and acetonitrile and applied to the arylation of 2,3-dihydrobenzofuran utilizing an array of arylboronic acid coupling partners. Finally, the two procedures were combined to perform a tandem enzymatic halogenation/aqueous Suzuki cross-coupling of 2,3-dihydrobenzofuran to give the arylated product in 74% yield.

ContributorsHarstad, Lauren (Author) / Biegasiewicz, Kyle (Thesis director) / Trovitch, Ryan (Committee member) / Arias-Rotondo, Daniela (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-12