Matching Items (3)
Filtering by

Clear all filters

151454-Thumbnail Image.png
Description
Nitride semiconductors have wide applications in electronics and optoelectronics technologies. Understanding the nature of the optical recombination process and its effects on luminescence efficiency is important for the development of novel devices. This dissertation deals with the optical properties of nitride semiconductors, including GaN epitaxial layers and more complex heterostructures.

Nitride semiconductors have wide applications in electronics and optoelectronics technologies. Understanding the nature of the optical recombination process and its effects on luminescence efficiency is important for the development of novel devices. This dissertation deals with the optical properties of nitride semiconductors, including GaN epitaxial layers and more complex heterostructures. The emission characteristics are examined by cathodoluminescence spectroscopy and imaging, and are correlated with the structural and electrical properties studied by transmission electron microscopy and electron holography. Four major areas are covered in this dissertation, which are described next. The effect of strain on the emission characteristics in wurtzite GaN has been studied. The values of the residual strain in GaN epilayers with different dislocation densities are determined by x-ray diffraction, and the relationship between exciton emission energy and the in-plane residual strain is demonstrated. It shows that the emission energy increases withthe magnitude of the in-plane compressive strain. The temperature dependence of the emission characteristics in cubic GaN has been studied. It is observed that the exciton emission and donor-acceptor pair recombination behave differently with temperature. The donor-bound exciton binding energy has been measured to be 13 meV from the temperature dependence of the emission spectrum. It is also found that the ionization energies for both acceptors and donors are smaller in cubic compared with hexagonal structures, which should contribute to higher doping efficiencies. A comprehensive study on the structural and optical properties is presented for InGaN/GaN quantum wells emitting in the blue, green, and yellow regions of the electromagnetic spectrum. Transmission electron microscopy images indicate the presence of indium inhomogeneties which should be responsible for carrier localization. The temperature dependence of emission luminescence shows that the carrier localization effects become more significant with increasing emission wavelength. On the other hand, the effect of non-radiative recombination on luminescence efficiency also varies with the emission wavelength. The fast increase of the non-radiative recombination rate with temperature in the green emitting QWs contributes to the lower efficiency compared with the blue emitting QWs. The possible saturation of non-radiative recombination above 100 K may explain the unexpected high emission efficiency for the yellow emitting QWs Finally, the effects of InGaN underlayers on the electronic and optical properties of InGaN/GaN quantum wells emitting in visible spectral regions have been studied. A significant improvement of the emission efficiency is observed, which is associated with a blue shift in the emission energy, a reduced recombination lifetime, an increased spatial homogeneity in the luminescence, and a weaker internal field across the quantum wells. These are explained by a partial strain relaxation introduced by the InGaN underlayer, which is measured by reciprocal space mapping of the x-ray diffraction intensity.
ContributorsLi, Di (Author) / Ponce, Fernando (Thesis advisor) / Culbertson, Robert (Committee member) / Yu, Hongbin (Committee member) / Shumway, John (Committee member) / Menéndez, Jose (Committee member) / Arizona State University (Publisher)
Created2012
153104-Thumbnail Image.png
Description
Group III-nitride semiconductors have been commercially used in the fabrication of light-emitting diodes and laser diodes, covering the ultraviolet-visible-infrared spectral range and exhibit unique properties suitable for modern optoelectronic applications. InGaN ternary alloys have energy band gaps ranging from 0.7 to 3.4 eV. It has a great potential in

Group III-nitride semiconductors have been commercially used in the fabrication of light-emitting diodes and laser diodes, covering the ultraviolet-visible-infrared spectral range and exhibit unique properties suitable for modern optoelectronic applications. InGaN ternary alloys have energy band gaps ranging from 0.7 to 3.4 eV. It has a great potential in the application for high efficient solar cells. AlGaN ternary alloys have energy band gaps ranging from 3.4 to 6.2 eV. These alloys have a great potential in the application of deep ultra violet laser diodes. However, there are still many issues with these materials that remain to be solved. In this dissertation, several issues concerning structural, electronic, and optical properties of III-nitrides have been investigated using transmission electron microscopy. First, the microstructure of InxGa1-xN (x = 0.22, 0.46, 0.60, and 0.67) films grown by metal-modulated epitaxy on GaN buffer /sapphire substrates is studied. The effect of indium composition on the structure of InGaN films and strain relaxation is carefully analyzed. High luminescence intensity, low defect density, and uniform full misfit strain relaxation are observed for x = 0.67. Second, the properties of high-indium-content InGaN thin films using a new molecular beam epitaxy method have been studied for applications in solar cell technologies. This method uses a high quality AlN buffer with large lattice mismatch that results in a critical thickness below one lattice parameter. Finally, the effect of different substrates and number of gallium sources on the microstructure of AlGaN-based deep ultraviolet laser has been studied. It is found that defects in epitaxial layer are greatly reduced when the structure is deposited on a single crystal AlN substrate. Two gallium sources in the growth of multiple quantum wells active region are found to cause a significant improvement in the quality of quantum well structures.
ContributorsWei, Yong (Author) / Ponce, Fernando (Thesis advisor) / Chizmeshya, Andrew (Committee member) / McCartney, Martha (Committee member) / Menéndez, Jose (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2014
161899-Thumbnail Image.png
Description
Wide bandgap semiconductors, also known as WBG semiconductors are materials which have larger bandgaps than conventional semiconductors such as Si or GaAs. They permit devices to operate at much higher voltages, frequencies and temperatures. They are the key material used to make LEDs, lasers, radio frequency applications, military applications, and

Wide bandgap semiconductors, also known as WBG semiconductors are materials which have larger bandgaps than conventional semiconductors such as Si or GaAs. They permit devices to operate at much higher voltages, frequencies and temperatures. They are the key material used to make LEDs, lasers, radio frequency applications, military applications, and power electronics. Their intrinsic qualities make them promising for next-generation devices for general semiconductor use. Their ability to handle higher power density is particularly attractive for attempts to sustain Moore's law, as conventional technologies appear to be reaching a bottleneck. Apart from WBG materials, ultra-wide bandgap (UWBG) materials, such as Ga2O3, AlN, diamond, or BN, are also attractive since they have even more extreme properties. Although this field is relatively new, which still remains a lot of effort to study and investigate, people can still expect that these materials could be the main characters for more advanced applications in the near future. In the dissertation, three topics with power devices made by WBG or UWBG semiconductors were introduced. In chapter 1, a generally background knowledge introduction is given. This helps the reader to learn current research focuses. In chapter 2, a comprehensive study of temperature-dependent characteristics of Ga2O3 SBDs with highly-doped substrate is demonstrated. A modified thermionic emission model over an inhomogeneous barrier with a voltage-dependent barrier height is investigated. Besides, the mechanism of surface leakage current is also discussed. These results are beneficial for future developments of low-loss β-Ga2O3 electronics and optoelectronics. In chapter 3, vertical GaN Schottky barrier diodes (SBDs) with floating metal rings (FMRs) as edge termination structures on bulk GaN substrates was introduced. This work represents a useful reference for the FMR termination design for GaN power devices. In chapter 4, AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors (MISHEMTs) fabricated on Si substrates with a 10 nm boron nitride (BN) layer as gate dielectric was demonstrated. The material characterization was investigated by X-ray photoelectric spectroscopy (XPS) and UV photoelectron spectroscopy (UPS). And the gate leakage current mechanisms were also investigated by temperature-dependent current-voltage measurements. Although still in its infancy, past and projected future progress of electronic designs will ultimately achieve this very goal that WBG and UWBG semiconductors will be indispensable for today and future’s science, technologies and society.
ContributorsYang, Tsung-Han (Author) / Zhao, Yuji (Thesis advisor) / Vasileska, Dragica (Committee member) / Yu, Hongbin (Committee member) / Nemanich, Robert (Committee member) / Arizona State University (Publisher)
Created2021