Matching Items (5)
Filtering by

Clear all filters

154755-Thumbnail Image.png
Description
High-performance III-V semiconductors based on ternary alloys and superlattice systems are fabricated, studied, and compared for infrared optoelectronic applications. InAsBi is a ternary alloy near the GaSb lattice constant that is not as thoroughly investigated as other III-V alloys and that is challenging to produce as Bi has a

High-performance III-V semiconductors based on ternary alloys and superlattice systems are fabricated, studied, and compared for infrared optoelectronic applications. InAsBi is a ternary alloy near the GaSb lattice constant that is not as thoroughly investigated as other III-V alloys and that is challenging to produce as Bi has a tendency to surface segregate and form droplets during growth rather than incorporate. A growth window is identified within which high-quality droplet-free bulk InAsBi is produced and Bi mole fractions up to 6.4% are obtained. Photoluminescence with high internal quantum efficiency is observed from InAs/InAsBi quantum wells. The high structural and optical quality of the InAsBi materials examined demonstrates that bulk, quantum well, and superlattice structures utilizing InAsBi are an important design option for efficient infrared coverage.

Another important infrared material system is InAsSb and the strain-balanced InAs/InAsSb superlattice on GaSb. Detailed examination of X-ray diffraction, photoluminescence, and spectroscopic ellipsometry data provides the temperature and composition dependent bandgap of bulk InAsSb. The unintentional incorporation of approximately 1% Sb into the InAs layers of the superlattice is measured and found to significantly impact the analysis of the InAs/InAsSb band alignment. In the analysis of the absorption spectra, the ground state absorption coefficient and transition strength of the superlattice are proportional to the square of the electron-hole wavefunction overlap; wavefunction overlap is therefore a major design parameter in terms of optimizing absorption in these materials. Furthermore in addition to improvements through design optimization, the optical quality of the materials studied is found to be positively enhanced with the use of Bi as a surfactant during molecular beam epitaxy growth.

A software tool is developed that calculates and optimizes the miniband structure of semiconductor superlattices, including bismide-based designs. The software has the capability to limit results to designs that can be produced with high structural and optical quality, and optimized designs in terms of maximizing absorption are identified for several infrared superlattice systems at the GaSb lattice constant. The accuracy of the software predictions are tested with the design and growth of an optimized mid-wave infrared InAs/InAsSb superlattice which exhibits superior optical and absorption properties.
ContributorsWebster, Preston Thomas (Author) / Johnson, Shane R (Thesis advisor) / Zhang, Yong-Hang (Committee member) / Menéndez, Jose (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2016
147783-Thumbnail Image.png
Description

This paper analyzes the history and impact of the double-slit experiment on the world of physics. The experiment was initially created by Thomas Young in the early nineteenth century to prove that light behaved as a wave, and the experiment’s findings ended up being foundational to the classical wave theory

This paper analyzes the history and impact of the double-slit experiment on the world of physics. The experiment was initially created by Thomas Young in the early nineteenth century to prove that light behaved as a wave, and the experiment’s findings ended up being foundational to the classical wave theory of light. Decades later, the experiment was replicated once more with electrons instead of light and shockingly demonstrated that electrons possessed a dual nature of behavior in that they acted in some instances as particles and in others as waves. Despite numerous modifications and replications, the dual behavior of electrons has never been definitively explained. Numerous interpretations of quantum mechanics all offer their own explanations of the double-slit experiment’s results. Notably, the Copenhagen Interpretation states that an observer measuring a quantum system, such as the double-slit experiment, causes the electrons to behave classically (i.e. as a particle.) The Many Worlds Interpretation offers that multiple branching worlds come into existence to represent the physical occurrence of all probable outcomes of the double-slit experiment. In these and other interpretations, explanations of the double-slit experiment are key to proving their respective dogmas. The double-slit experiment has historically been very important to the worlds of both classical and quantum physics and is still being modified and replicated to this day. It is clear that it will continue to remain relevant even in the future of physics.

ContributorsRodriguez, Zachary M (Author) / Foy, Joseph (Thesis director) / Hines, Taylor (Committee member) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
DescriptionThis project covers the history and background of the phenomenon in quantum physics known as quantum entanglement. The paper then describes the experiments done by the 2022 Nobel Prize winners on entangled particles and the possible real-world applications of such research.
ContributorsHossain, Tasnia (Author) / Foy, Joseph (Thesis director) / Hines, Taylor (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
166212-Thumbnail Image.png
Description

Our work explores a fascinating experiment in physics and science, the Double-Slit Experiment. We cover the mystery of this experiment, representing the wave and particle nature of photons, electrons, and quantum elements. We recount the history of quantum physics, an unknown field for most people due to its detachment from

Our work explores a fascinating experiment in physics and science, the Double-Slit Experiment. We cover the mystery of this experiment, representing the wave and particle nature of photons, electrons, and quantum elements. We recount the history of quantum physics, an unknown field for most people due to its detachment from the world we see. Finally, we explore the capability of the human eye to detect light in its quantum state, closing the gap between us and quantum physics.

ContributorsAndersen, Liam (Author) / Bujan, Reynaldo R. (Co-author) / Foy, Joseph (Thesis director) / Martin, Thomas (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2022-05
166213-Thumbnail Image.png
Description

Our work explores a fascinating experiment in physics and science, the Double-Slit Experiment. We cover the mystery of this experiment, representing the wave and particle nature of photons, electrons, and quantum elements. We recount the history of quantum physics, an unknown field for most people due to its detachment from

Our work explores a fascinating experiment in physics and science, the Double-Slit Experiment. We cover the mystery of this experiment, representing the wave and particle nature of photons, electrons, and quantum elements. We recount the history of quantum physics, an unknown field for most people due to its detachment from the world we see. Finally, we explore the capability of the human eye to detect light in its quantum state, closing the gap between us and quantum physics.

ContributorsBujan, Reynaldo R. (Author) / Andersen, Liam (Co-author) / Foy, Joseph (Thesis director) / Martin, Thomas (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2022-05