Matching Items (6)
Filtering by

Clear all filters

151671-Thumbnail Image.png
Description
Concussion, a subset of mild traumatic brain injury (mTBI), has recently been brought to the forefront of the media due to a large lawsuit filed against the National Football League. Concussion resulting from injury varies in severity, duration, and type, based on many characteristics about the individual that research does

Concussion, a subset of mild traumatic brain injury (mTBI), has recently been brought to the forefront of the media due to a large lawsuit filed against the National Football League. Concussion resulting from injury varies in severity, duration, and type, based on many characteristics about the individual that research does not presently understand. Chronic fatigue, poor working memory, impaired self-awareness, and lack of attention to task are symptoms commonly present post-concussion. Currently, there is not a standard method of assessing concussion, nor is there a way to track an individual's recovery, resulting in misguided treatment for better prognosis. The aim of the following study was to determine patient specific higher-order cognitive processing deficits for clinical diagnosis and prognosis of concussion. Six individuals (N=6) were seen during the acute phase of concussion, two of whom were seen subsequently when their symptoms were deemed clinically resolved. Subjective information was collected from both the patient and from neurology testing. Each individual completed a task, in which they were presented with degraded speech, taxing their higher-order cognitive processing. Patient specific behavioral patterns are noted, creating a unique paradigm for mapping subjective and objective data for each patient's strategy to compensate for deficits and understand speech in a difficult listening situation. Keywords: concussion, cognitive processing
ContributorsBerg, Dena (Author) / Liss, Julie M (Committee member) / Azuma, Tamiko (Committee member) / Caviness, John (Committee member) / Arizona State University (Publisher)
Created2013
189324-Thumbnail Image.png
Description
A current thrust in neurorehabilitation research involves exogenous neuromodulation of peripheral nerves to enhance neuroplasticity and maximize recovery of function. This dissertation presents the results of four experiments aimed at assessing the effects of trigeminal nerve stimulation (TNS) and occipital nerve stimulation (ONS) on motor learning, which was behaviorally characterized

A current thrust in neurorehabilitation research involves exogenous neuromodulation of peripheral nerves to enhance neuroplasticity and maximize recovery of function. This dissertation presents the results of four experiments aimed at assessing the effects of trigeminal nerve stimulation (TNS) and occipital nerve stimulation (ONS) on motor learning, which was behaviorally characterized using an upper extremity visuomotor adaptation paradigm. In Aim 1a, the effects of offline TNS using clinically tested frequencies (120 and 60 Hz) were characterized. Sixty-three participants (22.75±4.6 y/o), performed a visuomotor rotation task and received TNS before encountering rotation of hand visual feedback. In Aim 1b, TNS at 3 kHz, which has been shown to be more tolerable at higher current intensities, was evaluated in 42 additional subjects (23.4±4.6 y/o). Results indicated that 3 kHz stimulation accelerated learning while 60 Hz stimulation slowed learning, suggesting a frequency-dependent effect on learning. In Aim 2, the effect of online TNS using 120 and 60 Hz were characterized to determine if this protocol would deliver better outcomes. Sixty-three participants (23.2±3.9 y/o) received either TNS or sham concurrently with perturbed visual feedback. Results showed no significant differences among groups. However, a cross-study comparison of results obtained with 60 Hz offline TNS showed a statistically significant improvement in learning rates with online stimulation relative to offline, suggesting a timing-dependent effect on learning. In Aim 3, TNS and ONS were compared using the best protocol from previous aims (offline 3 kHz). Additionally, concurrent stimulation of both nerves was explored to look for potential synergistic effects. Eighty-four participants (22.9±3.2 y/o) were assigned to one of four groups: TNS, ONS, TNS+ONS, and sham. Visual inspection of learning curves revealed that the ONS group demonstrated the fastest learning among groups. However, statistical analyses did not confirm this observation. In addition, the TNS+ONS group appeared to learn faster than the sham and TNS groups but slower than the ONS only group, suggesting no synergistic effects using this protocol, as initially hypothesized. The results provide new information on the potential use of TNS and ONS in neurorehabilitation and performance enhancement in the motor domain.
ContributorsArias, Diego (Author) / Buneo, Christopher (Thesis advisor) / Schaefer, Sydney (Committee member) / Helms-Tillery, Stephen (Committee member) / Santello, Marco (Committee member) / Kleim, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2023
153905-Thumbnail Image.png
Description
Noninvasive neuromodulation could help treat many neurological disorders, but existing techniques have low resolution and weak penetration. Ultrasound (US) shows promise for stimulation of smaller areas and subcortical structures. However, the mechanism and parameter design are not understood. US can stimulate tail and hindlimb movements in rats, but not forelimb,

Noninvasive neuromodulation could help treat many neurological disorders, but existing techniques have low resolution and weak penetration. Ultrasound (US) shows promise for stimulation of smaller areas and subcortical structures. However, the mechanism and parameter design are not understood. US can stimulate tail and hindlimb movements in rats, but not forelimb, for unknown reasons. Potentially, US could also stimulate peripheral or enteric neurons for control of blood glucose.

To better understand the inconsistent effects across rat motor cortex, US modulation of electrically-evoked movements was tested. A stimulation array was implanted on the cortical surface and US (200 kHz, 30-60 W/cm2 peak) was applied while measuring changes in the evoked forelimb and hindlimb movements. Direct US stimulation of the hindlimb was also studied. To test peripheral effects, rat blood glucose levels were measured while applying US near the liver.

No short-term motor modulation was visible (95% confidence interval: -3.5% to +5.1% forelimb, -3.8% to +5.5% hindlimb). There was significant long-term (minutes-order) suppression (95% confidence interval: -3.7% to -10.8% forelimb, -3.8% to -11.9% hindlimb). This suppression may be due to the considerable heating (+1.8°C between US
on-US conditions); effects of heat and US were not separable in this experiment. US directly evoked hindlimb and scrotum movements in some sessions. This required a long interval, at least 3 seconds between US bursts. Movement could be evoked with much shorter pulses than used in literature (3 ms). The EMG latency (10 ms) was compatible with activation of corticospinal neurons. The glucose modulation test showed a strong increase in a few trials, but across all trials found no significant effect.

The single motor response and the long refractory period together suggest that only the beginning of the US burst had a stimulatory effect. This would explain the lack of short-term modulation, and suggests future work with shorter pulses could better explore the missing forelimb response. During the refractory period there was no change in the electrically-evoked response, which suggests the US stimulation mechanism is independent of normal brain activity. These results challenge the literature-standard protocols and provide new insights on the unknown mechanism.
ContributorsGulick, Daniel Withers (Author) / Kleim, Jeffrey (Thesis advisor) / Towe, Bruce (Thesis advisor) / Muthuswamy, Jitendran (Committee member) / Herman, Richard (Committee member) / Helms Tillery, Steven (Committee member) / Arizona State University (Publisher)
Created2015
153202-Thumbnail Image.png
Description
Traumatic brain injury (TBI) most frequently occurs in pediatric patients and remains a leading cause of childhood death and disability. Mild TBI (mTBI) accounts for 70-90% of all TBI cases, yet its neuropathophysiology is still poorly understood. While a single mTBI injury can lead to persistent deficits, repeat injuries

Traumatic brain injury (TBI) most frequently occurs in pediatric patients and remains a leading cause of childhood death and disability. Mild TBI (mTBI) accounts for 70-90% of all TBI cases, yet its neuropathophysiology is still poorly understood. While a single mTBI injury can lead to persistent deficits, repeat injuries increase the severity and duration of both acute symptoms and long term deficits. In this study, to model pediatric repetitive mTBI (rmTBI) we subjected unrestrained juvenile animals (post-natal day 20) to repeat weight drop impact. Animals were anesthetized and subjected to sham or rmTBI once per day for 5 days. At 14 days post injury (PID), magnetic resonance imaging (MRI) revealed that rmTBI animals displayed marked cortical atrophy and ventriculomegaly. Specifically, the thickness of the cortex was reduced up to 46% beneath and the ventricles increased up to 970% beneath the impact zone. Immunostaining with the neuron specific marker NeuN revealed an overall loss of neurons within the motor cortex but no change in neuronal density. Examination of intrinsic and synaptic properties of layer II/III pyramidal neurons revealed no significant difference between sham and rmTBI animals at rest or under convulsant challenge with the potassium channel blocker, 4-Aminophyridine. Overall, our findings indicate that the neuropathological changes reported after pediatric rmTBI can be effectively modeled by repeat weight drop in juvenile animals. Developing a better understanding of how rmTBI alters the pediatric brain may help improve patient care and direct "return to game" decision making in adolescents.
ContributorsGoddeyne, Corey (Author) / Anderson, Trent (Thesis advisor) / Smith, Brian (Committee member) / Kleim, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2014
155901-Thumbnail Image.png
Description
Transcranial electrical stimulation (tES) is a non-invasive brain stimulation therapy that has shown potential in improving motor, physiological and cognitive functions in healthy and diseased population. Typical tES procedures involve application of weak current (< 2 mA) to the brain via a pair of large electrodes placed on the scalp.

Transcranial electrical stimulation (tES) is a non-invasive brain stimulation therapy that has shown potential in improving motor, physiological and cognitive functions in healthy and diseased population. Typical tES procedures involve application of weak current (< 2 mA) to the brain via a pair of large electrodes placed on the scalp. While the therapeutic benefits of tES are promising, the efficacy of tES treatments is limited by the knowledge of how current travels in the brain. It has been assumed that the current density and electric fields are the largest, and thus have the most effect, in brain structures nearby the electrodes. Recent studies using finite element modeling (FEM) have suggested that current patterns in the brain are diffuse and not concentrated in any particular brain structure. Although current flow modeling is useful means of informing tES target optimization, few studies have validated tES FEM models against experimental measurements. MREIT-CDI can be used to recover magnetic flux density caused by current flow in a conducting object. This dissertation reports the first comparisons between experimental data from in-vivo human MREIT-CDI during tES and results from tES FEM using head models derived from the same subjects. First, tES FEM pipelines were verified by confirming FEM predictions agreed with analytic results at the mesh sizes used and that a sufficiently large head extent was modeled to approximate results on human subjects. Second, models were used to predict magnetic flux density, and predicted and MREIT-CDI results were compared to validate and refine modeling outcomes. Finally, models were used to investigate inter-subject variability and biological side effects reported by tES subjects. The study demonstrated good agreements in patterns between magnetic flux distributions from experimental and simulation data. However, the discrepancy in scales between simulation and experimental data suggested that tissue conductivities typically used in tES FEM might be incorrect, and thus performing in-vivo conductivity measurements in humans is desirable. Overall, in-vivo MREIT-CDI in human heads has been established as a validation tool for tES predictions and to study the underlying mechanisms of tES therapies.
ContributorsIndahlastari, Aprinda (Author) / Sadleir, Rosalind J (Thesis advisor) / Abbas, James (Committee member) / Frakes, David (Committee member) / Kleim, Jeffrey (Committee member) / Kodibagkar, Vikram (Committee member) / Arizona State University (Publisher)
Created2017
152594-Thumbnail Image.png
Description
The recent spotlight on concussion has illuminated deficits in the current standard of care with regard to addressing acute and persistent cognitive signs and symptoms of mild brain injury. This stems, in part, from the diffuse nature of the injury, which tends not to produce focal cognitive or behavioral deficits

The recent spotlight on concussion has illuminated deficits in the current standard of care with regard to addressing acute and persistent cognitive signs and symptoms of mild brain injury. This stems, in part, from the diffuse nature of the injury, which tends not to produce focal cognitive or behavioral deficits that are easily identified or tracked. Indeed it has been shown that patients with enduring symptoms have difficulty describing their problems; therefore, there is an urgent need for a sensitive measure of brain activity that corresponds with higher order cognitive processing. The development of a neurophysiological metric that maps to clinical resolution would inform decisions about diagnosis and prognosis, including the need for clinical intervention to address cognitive deficits. The literature suggests the need for assessment of concussion under cognitively demanding tasks. Here, a joint behavioral- high-density electroencephalography (EEG) paradigm was employed. This allows for the examination of cortical activity patterns during speech comprehension at various levels of degradation in a sentence verification task, imposing the need for higher-order cognitive processes. Eight participants with concussion listened to true-false sentences produced with either moderately to highly intelligible noise-vocoders. Behavioral data were simultaneously collected. The analysis of cortical activation patterns included 1) the examination of event-related potentials, including latency and source localization, and 2) measures of frequency spectra and associated power. Individual performance patterns were assessed during acute injury and a return visit several months following injury. Results demonstrate a combination of task-related electrophysiology measures correspond to changes in task performance during the course of recovery. Further, a discriminant function analysis suggests EEG measures are more sensitive than behavioral measures in distinguishing between individuals with concussion and healthy controls at both injury and recovery, suggesting the robustness of neurophysiological measures during a cognitively demanding task to both injury and persisting pathophysiology.
ContributorsUtianski, Rene (Author) / Liss, Julie M (Thesis advisor) / Berisha, Visar (Committee member) / Caviness, John N (Committee member) / Dorman, Michael (Committee member) / Arizona State University (Publisher)
Created2014