Matching Items (2)
Filtering by

Clear all filters

147568-Thumbnail Image.png
Description

Lack of proprioceptive feedback is one cause for the high upper-limb prosthesis abandonment rate. The lack of environmental interaction normalcy from unreliable proprioception creates dissatisfaction among prosthesis users. The purpose of this experiment is to investigate the effects of square breathing on learning to navigate without reliable proprioception. Square breathing

Lack of proprioceptive feedback is one cause for the high upper-limb prosthesis abandonment rate. The lack of environmental interaction normalcy from unreliable proprioception creates dissatisfaction among prosthesis users. The purpose of this experiment is to investigate the effects of square breathing on learning to navigate without reliable proprioception. Square breathing is thought to influence the vagus nerve which is linked to increased learning rates. In this experiment, participants were instructed to reach toward targets in a semi-immersive virtual reality environment. Directional error, peak velocity, and peak acceleration of the reaching hand were investigated before and after participants underwent square breathing training. As the results of<br/>this experiment are inconclusive, further investigation needs to be done with larger sample sizes and examining unperturbed data to fully understand the effects of square breathing on learning new motor strategies in unreliable proprioceptive conditions.

ContributorsBonar, Sonja Marie (Author) / Helms Tillery, Stephen (Thesis director) / Tanner, Justin (Committee member) / VanGuilder, Paul (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
157696-Thumbnail Image.png
Description
Previously accomplished research examined sensory integration between upper limb proprioception and tactile sensation. The active proprioceptive-tactile relationship points towards an opportunity to examine neuromodulation effects on sensory integration with respect to proprioceptive error magnitude and direction. Efforts to improve focus and attention during upper limb proprioceptive tasks results in a

Previously accomplished research examined sensory integration between upper limb proprioception and tactile sensation. The active proprioceptive-tactile relationship points towards an opportunity to examine neuromodulation effects on sensory integration with respect to proprioceptive error magnitude and direction. Efforts to improve focus and attention during upper limb proprioceptive tasks results in a decrease of proprioceptive error magnitudes and greater endpoint accuracy. Increased focus and attention can also be correlated to neurophysiological activity in the Locus Coeruleus (LC) during a variety of mental tasks. Through non-invasive trigeminal nerve stimulation, it may be possible to affect the activity of the LC and induce improvements in arousal and attention that would assist in proprioceptive estimation. The trigeminal nerve projects to the LC through the mesencephalic nucleus of the trigeminal complex, providing a pathway similar to the effects seen from vagus nerve stimulation. In this experiment, the effect of trigeminal nerve stimulation (TNS) on proprioceptive ability is evaluated by the proprioceptive estimation error magnitude and direction, while LC activation via autonomic pathways is indirectly measured using pupil diameter, pupil recovery time, and pupil velocity. TNS decreases proprioceptive error magnitude in 59% of subjects, while having no measurable impact on proprioceptive strategy. Autonomic nervous system changes were observed in 88% of subjects, with mostly parasympathetic activation and a mixed sympathetic effect.
ContributorsOrthlieb, Gerrit Chi Luk (Author) / Helms-Tillery, Stephen (Thesis advisor) / Tanner, Justin (Committee member) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2019