Matching Items (3)
Filtering by

Clear all filters

150354-Thumbnail Image.png
Description
There is an inexorable link between structure and stress, both of which require study in order to truly understand the physics of thin films. To further our knowledge of thin films, the relationship between structure and stress development was examined in three separate systems in vacuum. The first was continued

There is an inexorable link between structure and stress, both of which require study in order to truly understand the physics of thin films. To further our knowledge of thin films, the relationship between structure and stress development was examined in three separate systems in vacuum. The first was continued copper thin film growth in ultra-high vacuum after adsorption of a sub-monolayer quantity of oxygen. Results showed an increase in compressive stress generation, and theory was proposed to explain the additional compressive stress within the films. The second system explored was the adsorption of carbon monoxide on the platinum {111} surface in vacuum. The experiments displayed a correlation between known structural developments in the adsorbed carbon monoxide adlayer and the surface stress state of the system. The third system consisted of the growth and annealing stresses of ice thin films at cryogenic temperatures in vacuum. It was shown that the growth stresses are clearly linked to known morphology development from literature, with crystalline ice developing compressive and amorphous ice developing tensile stresses respectively, and that amorphous ice films develop additional tensile stresses upon annealing.
ContributorsKennedy, Jordan (Author) / Friesen, Cody (Thesis advisor) / Sieradzki, Karl (Committee member) / Crozier, Peter (Committee member) / Arizona State University (Publisher)
Created2011
Description
Nanocrystalline (nc) thin films exhibit a wide range of enhanced mechanical properties compared to their coarse-grained counterparts. Furthermore, the mechanical behavior and microstructure of nc films is intimately related. Thus, precise control of the size, aspect ratio and spatial distribution of grains can enable the synthesis of thin films

Nanocrystalline (nc) thin films exhibit a wide range of enhanced mechanical properties compared to their coarse-grained counterparts. Furthermore, the mechanical behavior and microstructure of nc films is intimately related. Thus, precise control of the size, aspect ratio and spatial distribution of grains can enable the synthesis of thin films with exceptional mechanical properties. However, conventional bottom-up techniques for synthesizing thin films are incapable of achieving the microstructural control required to explicitly tune their properties. This dissertation focuses on developing a novel technique to synthesize metallic alloy thin films with precisely controlled microstructures and subsequently characterizing their mechanical properties using in situ transmission electron microscopy (TEM). Control over the grain size and distribution was achieved by controlling the recrystallization process of amorphous films by the use of thin crystalline seed layers. The novel technique was used to manipulate the microstructure of structural (TiAl) and functional (NiTi) thin films thereby exhibiting its capability and versatility. Following the synthesis of thin films with tailored microstructures, in situ TEM techniques were employed to probe their mechanical properties. Firstly, a novel technique was developed to measure local atomic level elastic strains in metallic glass thin films during in situ TEM straining. This technique was used to detect structural changes and anelastic deformation in metallic glass thin films. Finally, as the electron beam (e-beam) in TEMs is known to cause radiation damage to specimen, systematic experiments were carried out to quantify the effect of the e-beam on the stress-strain response of nc metals. Experiments conducted on Al and Au films revealed that the e-beam enhances dislocation activity leading to stress relaxation.
ContributorsSarkar, Rohit (Author) / Rajagopalan, Jagannathan (Thesis advisor) / Peralta, Pedro (Committee member) / Sieradzki, Karl (Committee member) / Crozier, Peter (Committee member) / Arizona State University (Publisher)
Created2017
161284-Thumbnail Image.png
Description
Lithium conducting garnets in the family of Li7La3Zr2O12 (LLZO) are promising lithium conductors for solid-state batteries, due to their high ionic conductivity, thermal stability, and electrochemical stability with metallic lithium. Despite these advantages, LLZO requires a large energy input to synthesize and process. Generally, LLZO is synthesized using solid-state reaction

Lithium conducting garnets in the family of Li7La3Zr2O12 (LLZO) are promising lithium conductors for solid-state batteries, due to their high ionic conductivity, thermal stability, and electrochemical stability with metallic lithium. Despite these advantages, LLZO requires a large energy input to synthesize and process. Generally, LLZO is synthesized using solid-state reaction (SSR) from oxide precursors, requiring high reaction temperatures (900-1000 °C) and producing powder with large particle sizes, necessitating high energy milling to improve sinterability. In this dissertation, two classes of advanced synthesis methods – sol-gel polymer-combustion and molten salt synthesis (MSS) – are employed to obtain LLZO submicron powders at lower temperatures. In the first case, nanopowders of LLZO are obtained in a few hours at 700 °C via a novel polymer combustion process, which can be sintered to dense electrolytes possessing ionic conductivity up to 0.67 mS cm-1 at room temperature. However, the limited throughput of this combustion process motivated the use of molten salt synthesis, wherein a salt mixture is used as a high temperature solvent, allowing faster interdiffusion of atomic species than solid-state reactions. A eutectic mixture of LiCl-KCl allows formation of submicrometer undoped, Al-doped, Ga-doped, and Ta-doped LLZO at 900 °C in 4 h, with total ionic conductivities between 0.23-0.46 mS cm-1. By using a highly basic molten salt medium, Ta-doped LLZO (LLZTO) can be obtained at temperatures as low as 550 °C, with an ionic conductivity of 0.61 mS cm-1. The formation temperature can be further reduced by using Ta-doped, La-excess pyrochlore-type lanthanum zirconate (La2Zr2O7, LZO) as a quasi-single-source precursor, which convert to LLZTO as low as 400 °C upon addition of a Li-source. Further, doped pyrochlores can be blended with a Li-source and directly sintered to a relative density up to 94.7% with high conductivity (0.53 mS cm-1). Finally, a propensity for compositional variation in LLZTO powders and sintered ceramics was observed and for the first time explored in detail. By comparing LLZTO obtained from combustion, MSS, and SSR, a correlation between increased elemental inhomogeneity and reduced ionic conductivity is observed. Implications for garnet-based solid-state batteries and strategies to mitigate elemental inhomogeneity are discussed.
ContributorsWeller, Jon Mark (Author) / Chan, Candace K (Thesis advisor) / Crozier, Peter (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2021