Matching Items (67)
Filtering by

Clear all filters

150412-Thumbnail Image.png
Description
With the ongoing drought surpassing a decade in Arizona, scholars, water managers and decision-makers have heightened attention to the availability of water resources, especially in rapidly growing regions where demand may outgrow supplies or outpace the capacity of the community water systems. Community water system managing entities and the biophysical

With the ongoing drought surpassing a decade in Arizona, scholars, water managers and decision-makers have heightened attention to the availability of water resources, especially in rapidly growing regions where demand may outgrow supplies or outpace the capacity of the community water systems. Community water system managing entities and the biophysical and social characteristics of a place mediate communities' vulnerability to hazards such as drought and long-term climate change. The arid southwestern Phoenix metropolitan area is illustrative of the challenges that developed urban areas in arid climates face globally as population growth and climate change stress already fragile human-environmental systems. This thesis reveals the factors abating and exacerbating differential community water system vulnerability to water scarcity in communities simultaneously facing drought and rapid peri-urban growth. Employing a grounded, qualitative comparative case study approach, this thesis explores the interaction of social, biophysical and institutional factors as they effect the exposure, sensitivity and adaptive capacity of community water systems in Cave Creek and Buckeye, Arizona. Buckeye, once a small agricultural town in the West Valley, is wholly dependent on groundwater and currently planning for massive development to accommodate 218,591 new residents by 2020. Amid desert hills and near Tonto National Forest in the North Valley, Cave Creek is an upscale residential community suffering frequent water outages due to aging infrastructure and lack of system redundancy. Analyzing interviews, media accounts and policy documents, a narrative was composed explaining how place based factors, nested within a regional institutional water management framework, impact short and long-term vulnerability. This research adds to the library of vulnerability assessments completed using Polsky et al.'s Vulnerability Scoping Diagram and serves a pragmatic need assisting in the development of decision making tools that better represent the drivers of placed based vulnerability in arid metropolitan regions.
ContributorsZautner, Lilah (Author) / Larson, Kelli (Thesis advisor) / Bolin, Bob (Committee member) / Chhetri, Netra (Committee member) / Arizona State University (Publisher)
Created2011
150330-Thumbnail Image.png
Description
Over the past century in the southwestern United States human actions have altered hydrological processes that shape riparian ecosystems. One change, release of treated wastewater into waterways, has created perennial base flows and increased nutrient availability in ephemeral or intermittent channels. While there are benefits to utilizing treated wastewater for

Over the past century in the southwestern United States human actions have altered hydrological processes that shape riparian ecosystems. One change, release of treated wastewater into waterways, has created perennial base flows and increased nutrient availability in ephemeral or intermittent channels. While there are benefits to utilizing treated wastewater for environmental flows, there are numerous unresolved ecohydrological issues regarding the efficacy of effluent to sustain groundwater-dependent riparian ecosystems. This research examined how nutrient-rich effluent, released into waterways with varying depths to groundwater, influences riparian plant community development. Statewide analysis of spatial and temporal patterns of effluent generation and release revealed that hydrogeomorphic setting significantly influences downstream riparian response. Approximately 70% of effluent released is into deep groundwater systems, which produced the lowest riparian development. A greenhouse study assessed how varying concentrations of nitrogen and phosphorus, emulating levels in effluent, influenced plant community response. With increasing nitrogen concentrations, vegetation emerging from riparian seed banks had greater biomass, reduced species richness, and greater abundance of nitrophilic species. The effluent-dominated Santa Cruz River in southern Arizona, with a shallow groundwater upper reach and deep groundwater lower reach, served as a study river while the San Pedro River provided a control. Analysis revealed that woody species richness and composition were similar between the two systems. Hydric pioneers (Populus fremontii, Salix gooddingii) were dominant at perennial sites on both rivers. Nitrophilic species (Conium maculatum, Polygonum lapathifolium) dominated herbaceous plant communities and plant heights were greatest in effluent-dominated reaches. Riparian vegetation declined with increasing downstream distance in the upper Santa Cruz, while patterns in the lower Santa Cruz were confounded by additional downstream agricultural input and a channelized floodplain. There were distinct longitudinal and lateral shifts toward more xeric species with increasing downstream distance and increasing lateral distance from the low-flow channel. Patterns in the upper and lower Santa Cruz reaches indicate that water availability drives riparian vegetation outcomes below treatment facilities. Ultimately, this research informs decision processes and increases adaptive capacity for water resources policy and management through the integration of ecological data in decision frameworks regarding the release of effluent for environmental flows.
ContributorsWhite, Margaret Susan (Author) / Stromberg, Juliet C. (Thesis advisor) / Fisher, Stuart G. (Committee member) / White, Dave (Committee member) / Holway, James (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2011
152363-Thumbnail Image.png
Description
The act of moving water across basins is a recent phenomenon in Arizona water policy. This thesis creates a narrative arc for understanding the long-term issues that set precedents for interbasin water transportation and the immediate causes--namely the passage of the seminal Groundwater Management Act (GMA) in 1980--that motivated Scottsdale,

The act of moving water across basins is a recent phenomenon in Arizona water policy. This thesis creates a narrative arc for understanding the long-term issues that set precedents for interbasin water transportation and the immediate causes--namely the passage of the seminal Groundwater Management Act (GMA) in 1980--that motivated Scottsdale, Mesa, and Phoenix to acquire rural farmlands in the mid-1980s with the intent of transporting the underlying groundwater back to their respective service areas in the immediate future. Residents of rural areas were active participants in not only the sales of these farmlands, but also in how municipalities would economically develop these properties in the years to come. Their role made these municipal "water farm" purchases function as exchanges. Fears about the impact of these properties and the water transportation they anticipated on communities-of-origin; the limited nature of economic, fiscal, and hydrologic data at the time; and the rise of private water speculators turned water farms into a major political controversy. The six years it took the legislature to wrestle with the problem at the heart this issue--the value of water to rural communities--were among its most tumultuous. The loss of key lawmakers involved in GMA negotiations, the impeachment of Governor Evan Mecham, and a bribery scandal called AZScam collectively sidetracked negotiations. Even more critical was the absence of a mutual recognition that these water farms posed a problem and the external pressure that had forced all parties involved in earlier groundwater-related negotiations to craft compromise. After cities and speculators failed to force a bill favorable to their interests in 1989, a re-alignment among blocs occurred: cities joined with rural interests to craft legislation that grandfathered in existing urban water farms and limited future water farms to several basins. In exchange, rural interests supported a bill to create a Phoenix-area groundwater replenishment district that enabled cooperative management of water supplies. These two bills, which were jointly signed into law in June 1991, tentatively resolved the water farm issue. The creation of a groundwater replenishment district that has subsidized growth in Maricopa, Pinal, and Pima Counties, the creation water bank to store unused Central Arizona Project water for times of drought, and a host of water conservation measures and water leases enabled by the passage of several tribal water rights settlements have set favorable conditions such that Scottsdale, Mesa, and Phoenix never had any reason to transport any water from their water farms. The legacy of these properties then is that they were the product of the intense urgency and uncertainty in urban planning premised on assumptions of growing populations and complementary, inelastic demand. But even as per capita water consumption has declined throughout the Phoenix-area, continued growth has increased demand, beyond the capacity of available supplies so that there will likely be a new push for rural water farms in the foreseeable future.
ContributorsBergelin, Paul (Author) / Hirt, Paul (Thesis advisor) / Vandermeer, Philip (Committee member) / Smith, Karen (Committee member) / Arizona State University (Publisher)
Created2013
152296-Thumbnail Image.png
Description
Ten regional climate models (RCMs) and atmosphere-ocean generalized model parings from the North America Regional Climate Change Assessment Program were used to estimate the shift of extreme precipitation due to climate change using present-day and future-day climate scenarios. RCMs emulate winter storms and one-day duration events at the sub-regional level.

Ten regional climate models (RCMs) and atmosphere-ocean generalized model parings from the North America Regional Climate Change Assessment Program were used to estimate the shift of extreme precipitation due to climate change using present-day and future-day climate scenarios. RCMs emulate winter storms and one-day duration events at the sub-regional level. Annual maximum series were derived for each model pairing, each modeling period; and for annual and winter seasons. The reliability ensemble average (REA) method was used to qualify each RCM annual maximum series to reproduce historical records and approximate average predictions, because there are no future records. These series determined (a) shifts in extreme precipitation frequencies and magnitudes, and (b) shifts in parameters during modeling periods. The REA method demonstrated that the winter season had lower REA factors than the annual season. For the winter season the RCM pairing of the Hadley regional Model 3 and the Geophysical Fluid-Dynamics Laboratory atmospheric-land generalized model had the lowest REA factors. However, in replicating present-day climate, the pairing of the Abdus Salam International Center for Theoretical Physics' Regional Climate Model Version 3 with the Geophysical Fluid-Dynamics Laboratory atmospheric-land generalized model was superior. Shifts of extreme precipitation in the 24-hour event were measured using precipitation magnitude for each frequency in the annual maximum series, and the difference frequency curve in the generalized extreme-value-function parameters. The average trend of all RCM pairings implied no significant shift in the winter annual maximum series, however the REA-selected models showed an increase in annual-season precipitation extremes: 0.37 inches for the 100-year return period and for the winter season suggested approximately 0.57 inches for the same return period. Shifts of extreme precipitation were estimated using predictions 70 years into the future based on RCMs. Although these models do not provide climate information for the intervening 70 year period, the models provide an assertion on the behavior of future climate. The shift in extreme precipitation may be significant in the frequency distribution function, and will vary depending on each model-pairing condition. The proposed methodology addresses the many uncertainties associated with the current methodologies dealing with extreme precipitation.
ContributorsRiaño, Alejandro (Author) / Mays, Larry W. (Thesis advisor) / Vivoni, Enrique (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2013
151725-Thumbnail Image.png
Description
Woody plant encroachment is a worldwide phenomenon linked to water availability in semiarid systems. Nevertheless, the implications of woody plant encroachment on the hydrologic cycle are poorly understood, especially at the catchment scale. This study takes place in a pair of small semiarid rangeland undergoing the encroachment of Prosopis velutina

Woody plant encroachment is a worldwide phenomenon linked to water availability in semiarid systems. Nevertheless, the implications of woody plant encroachment on the hydrologic cycle are poorly understood, especially at the catchment scale. This study takes place in a pair of small semiarid rangeland undergoing the encroachment of Prosopis velutina Woot., or velvet mesquite tree. The similarly-sized basins are in close proximity, leading to equivalent meteorological and soil conditions. One basin was treated for mesquite in 1974, while the other represents the encroachment process. A sensor network was installed to measure ecohydrological states and fluxes, including precipitation, runoff, soil moisture and evapotranspiration. Observations from June 1, 2011 through September 30, 2012 are presented to describe the seasonality and spatial variability of ecohydrological conditions during the North American Monsoon (NAM). Runoff observations are linked to historical changes in runoff production in each watershed. Observations indicate that the mesquite-treated basin generates more runoff pulses and greater runoff volume for small rainfall events, while the mesquite-encroached basin generates more runoff volume for large rainfall events. A distributed hydrologic model is applied to both basins to investigate the runoff threshold processes experienced during the NAM. Vegetation in the two basins is classified into grass, mesquite, or bare soil using high-resolution imagery. Model predictions are used to investigate the vegetation controls on soil moisture, evapotranspiration, and runoff generation. The distributed model shows that grass and mesquite sites retain the highest levels of soil moisture. The model also captures the runoff generation differences between the two watersheds that have been observed over the past decade. Generally, grass sites in the mesquite-treated basin have less plant interception and evapotranspiration, leading to higher soil moisture that supports greater runoff for small rainfall events. For large rainfall events, the mesquite-encroached basin produces greater runoff due to its higher fraction of bare soil. The results of this study show that a distributed hydrologic model can be used to explain runoff threshold processes linked to woody plant encroachment at the catchment-scale and provides useful interpretations for rangeland management in semiarid areas.
ContributorsPierini, Nicole A (Author) / Vivoni, Enrique R (Thesis advisor) / Wang, Zhi-Hua (Committee member) / Mays, Larry W. (Committee member) / Arizona State University (Publisher)
Created2013
152225-Thumbnail Image.png
Description
The dynamics of urban water use are characterized by spatial and temporal variability that is influenced by associated factors at different scales. Thus it is important to capture the relationship between urban water use and its determinants in a spatio-temporal framework in order to enhance understanding and management of urban

The dynamics of urban water use are characterized by spatial and temporal variability that is influenced by associated factors at different scales. Thus it is important to capture the relationship between urban water use and its determinants in a spatio-temporal framework in order to enhance understanding and management of urban water demand. This dissertation aims to contribute to understanding the spatio-temporal relationships between single-family residential (SFR) water use and its determinants in a desert city. The dissertation has three distinct papers to support this goal. In the first paper, I demonstrate that aggregated scale data can be reliably used to study the relationship between SFR water use and its determinants without leading to significant ecological fallacy. The usability of aggregated scale data facilitates scientific inquiry about SFR water use with more available aggregated scale data. The second paper advances understanding of the relationship between SFR water use and its associated factors by accounting for the spatial and temporal dependence in a panel data setting. The third paper of this dissertation studies the historical contingency, spatial heterogeneity, and spatial connectivity in the relationship of SFR water use and its determinants by comparing three different regression models. This dissertation demonstrates the importance and necessity of incorporating spatio-temporal components, such as scale, dependence, and heterogeneity, into SFR water use research. Spatial statistical models should be used to understand the effects of associated factors on water use and test the effectiveness of certain management policies since spatial effects probably will significantly influence the estimates if only non-spatial statistical models are used. Urban water demand management should pay attention to the spatial heterogeneity in predicting the future water demand to achieve more accurate estimates, and spatial statistical models provide a promising method to do this job.
ContributorsOuyang, Yun (Author) / Wentz, Elizabeth (Thesis advisor) / Ruddell, Benjamin (Thesis advisor) / Harlan, Sharon (Committee member) / Janssen, Marcus (Committee member) / Arizona State University (Publisher)
Created2013
152089-Thumbnail Image.png
Description
Water resource management is becoming increasingly burdened by uncertain and fluctuating conditions resulting from climate change and population growth which place increased demands on already strained resources. Innovative water management schemes are necessary to address the reality of available water supplies. One such approach is the substitution of trade in

Water resource management is becoming increasingly burdened by uncertain and fluctuating conditions resulting from climate change and population growth which place increased demands on already strained resources. Innovative water management schemes are necessary to address the reality of available water supplies. One such approach is the substitution of trade in virtual water for the use of local water supplies. This study provides a review of existing work in the use of virtual water and water footprint methods. Virtual water trade has been shown to be a successful method for addressing water scarcity and decreasing overall water consumption by shifting high water consumptive processes to wetter regions. These results however assume that all water resource supplies are equivalent regardless of physical location and they do not tie directly to economic markets. In this study we introduce a new mathematical framework, Embedded Resource Accounting (ERA), which is a synthesis of several different analytical methods presently used to quantify and describe human interactions with the economy and the natural environment. We define the specifics of the ERA framework in a generic context for the analysis of embedded resource trade in a way that links directly with the economics of that trade. Acknowledging the cyclical nature of water and the abundance of actual water resources on Earth, this study addresses fresh water availability within a given region. That is to say, the quantities of fresh water supplies annually available at acceptable quality for anthropogenic uses. The results of this research provide useful tools for water resource managers and policy makers to inform decision making on, (1) reallocation of local available fresh water resources, and (2) strategic supplementation of those resources with outside fresh water resources via the import of virtual water.
ContributorsAdams, Elizabeth Anne (Author) / Ruddell, Benjamin L (Thesis advisor) / Allenby, Braden R. (Thesis advisor) / Seager, Thomas P (Committee member) / Arizona State University (Publisher)
Created2013
152084-Thumbnail Image.png
Description
This research presents an analysis of the main institutions and economic incentives that drive farmers behaviors on water use in the Chancay-Lambayeque basin, located in Lambayeque (Peru), a semi arid area of great agricultural importance. I focus my research on identifying the underlying causes of non-collaborative behaviors in regard to

This research presents an analysis of the main institutions and economic incentives that drive farmers behaviors on water use in the Chancay-Lambayeque basin, located in Lambayeque (Peru), a semi arid area of great agricultural importance. I focus my research on identifying the underlying causes of non-collaborative behaviors in regard to water appropriation and infrastructure provisioning decision that generates violent conflicts between users. Since there is not an agreed and concrete criteria to assess "sustainability" I used economic efficiency as my evaluative criteria because, even though this is not a sufficient condition to achieve sustainability it is a necessary one, and thus achieving economic efficiency is moving towards sustainable outcomes. Water management in the basin is far from being economic efficient which means that there is some room for improving social welfare. Previous studies of the region have successfully described the symptoms of this problem; however, they did not focus their study on identifying the causes of the problem. In this study, I describe and analyze how different rules and norms (institutions) define farmers behaviors related to water use. For this, I use the Institutional Analysis and Development framework and a dynamic game theory model to analyze how biophysical attributes, community attributes and rules of the system combined with other factors, can affect farmers actions in regard to water use and affect the sustainability of water resources. Results show that water rights are the factor that is fundamental to the problem. Then, I present an outline for policy recommendation, which includes a revision of water rights and related rules and policies that could increase the social benefits with the use of compensation mechanisms to reach economic efficiency. Results also show that commonly proposed solutions, as switch to less water intensive and more added value crops, improvement in the agronomic and entrepreneurial knowledge, or increases in water tariffs, can mitigate or exacerbate the loss of benefits that come from the poor incentives in the system; but they do not change the nature of the outcome.
ContributorsRubinos, Cathy (Author) / Eakin, Hallie (Committee member) / Abbot, Joshua K (Committee member) / York, Abigail (Committee member) / Arizona State University (Publisher)
Created2013
151362-Thumbnail Image.png
Description
Urban water systems face sustainability challenges ranging from water quality, leaks, over-use, energy consumption, and long-term supply concerns. Resiliency challenges include the capacity to respond to drought, managing pipe deterioration, responding to natural disasters, and preventing terrorism. One strategy to enhance sustainability and resiliency is the development and adoption of

Urban water systems face sustainability challenges ranging from water quality, leaks, over-use, energy consumption, and long-term supply concerns. Resiliency challenges include the capacity to respond to drought, managing pipe deterioration, responding to natural disasters, and preventing terrorism. One strategy to enhance sustainability and resiliency is the development and adoption of smart water grids. A smart water grid incorporates networked monitoring and control devices into its structure, which provides diverse, real-time information about the system, as well as enhanced control. Data provide input for modeling and analysis, which informs control decisions, allowing for improvement in sustainability and resiliency. While smart water grids hold much potential, there are also potential tradeoffs and adoption challenges. More publicly available cost-benefit analyses are needed, as well as system-level research and application, rather than the current focus on individual technologies. This thesis seeks to fill one of these gaps by analyzing the cost and environmental benefits of smart irrigation controllers. Smart irrigation controllers can save water by adapting watering schedules to climate and soil conditions. The potential benefit of smart irrigation controllers is particularly high in southwestern U.S. states, where the arid climate makes water scarcer and increases watering needs of landscapes. To inform the technology development process, a design for environment (DfE) method was developed, which overlays economic and environmental performance parameters under different operating conditions. This method is applied to characterize design goals for controller price and water savings that smart irrigation controllers must meet to yield life cycle carbon dioxide reductions and economic savings in southwestern U.S. states, accounting for regional variability in electricity and water prices and carbon overhead. Results from applying the model to smart irrigation controllers in the Southwest suggest that some areas are significantly easier to design for.
ContributorsMutchek, Michele (Author) / Allenby, Braden (Thesis advisor) / Williams, Eric (Committee member) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2012
150696-Thumbnail Image.png
Description
As much as 40% of the world's human population relies on rivers which originate on the Qinghai-Tibetan Plateau (QTP) (Xu et al. 2009, Immerzeel et al. 2010). However, the high alpine grasslands where these rivers emanate are at a crossroads. Fed by seasonal monsoon rains and glacial runoff, these rivers'

As much as 40% of the world's human population relies on rivers which originate on the Qinghai-Tibetan Plateau (QTP) (Xu et al. 2009, Immerzeel et al. 2010). However, the high alpine grasslands where these rivers emanate are at a crossroads. Fed by seasonal monsoon rains and glacial runoff, these rivers' frequent flooding contributes to massive losses of life and property downstream (Varis et al. 2012). Additionally, upstream grasslands, which regulate the flow of these rivers, are considered to be deteriorating (Harris 2010). This thesis examines the regional vulnerability of these rivers and highlights the impacts of several policy responses, finding that both climate change and grassland degradation pose significant challenges to Asia's water security. Additionally, I suggest that many of the responses elicited by policy makers to meet these challenges have failed. One of these policies has been the poisoning of a small, endemic, burrowing mammal and keystone species, the plateau pika (Ochotona curzoniae) (Smith and Foggin 1999). Contrary to their putative classification as a pest (Fan et al. 1999), I show that the plateau pika is instead an ecosystem engineer that actively increases the infiltration rate of water on the QTP with concomitant benefits to both local ecosystems and downstream hydrological processes.
ContributorsWilson, Maxwell (Author) / Smith, Andrew T. (Thesis advisor) / Wu, Jiangou (Committee member) / Hall, Sharon J. (Committee member) / Arizona State University (Publisher)
Created2012