Matching Items (5)
Filtering by

Clear all filters

151336-Thumbnail Image.png
Description
Over 2 billion people are using online social network services, such as Facebook, Twitter, Google+, LinkedIn, and Pinterest. Users update their status, post their photos, share their information, and chat with others in these social network sites every day; however, not everyone shares the same amount of information. This thesis

Over 2 billion people are using online social network services, such as Facebook, Twitter, Google+, LinkedIn, and Pinterest. Users update their status, post their photos, share their information, and chat with others in these social network sites every day; however, not everyone shares the same amount of information. This thesis explores methods of linking publicly available data sources as a means of extrapolating missing information of Facebook. An application named "Visual Friends Income Map" has been created on Facebook to collect social network data and explore geodemographic properties to link publicly available data, such as the US census data. Multiple predictors are implemented to link data sets and extrapolate missing information from Facebook with accurate predictions. The location based predictor matches Facebook users' locations with census data at the city level for income and demographic predictions. Age and relationship based predictors are created to improve the accuracy of the proposed location based predictor utilizing social network link information. In the case where a user does not share any location information on their Facebook profile, a kernel density estimation location predictor is created. This predictor utilizes publicly available telephone record information of all people with the same surname of this user in the US to create a likelihood distribution of the user's location. This is combined with the user's IP level information in order to narrow the probability estimation down to a local regional constraint.
ContributorsMao, Jingxian (Author) / Maciejewski, Ross (Thesis advisor) / Farin, Gerald (Committee member) / Wang, Yalin (Committee member) / Arizona State University (Publisher)
Created2012
153428-Thumbnail Image.png
Description
Social networking services have emerged as an important platform for large-scale information sharing and communication. With the growing popularity of social media, spamming has become rampant in the platforms. Complex network interactions and evolving content present great challenges for social spammer detection. Different from some existing well-studied platforms, distinct characteristics

Social networking services have emerged as an important platform for large-scale information sharing and communication. With the growing popularity of social media, spamming has become rampant in the platforms. Complex network interactions and evolving content present great challenges for social spammer detection. Different from some existing well-studied platforms, distinct characteristics of newly emerged social media data present new challenges for social spammer detection. First, texts in social media are short and potentially linked with each other via user connections. Second, it is observed that abundant contextual information may play an important role in distinguishing social spammers and normal users. Third, not only the content information but also the social connections in social media evolve very fast. Fourth, it is easy to amass vast quantities of unlabeled data in social media, but would be costly to obtain labels, which are essential for many supervised algorithms. To tackle those challenges raise in social media data, I focused on developing effective and efficient machine learning algorithms for social spammer detection.

I provide a novel and systematic study of social spammer detection in the dissertation. By analyzing the properties of social network and content information, I propose a unified framework for social spammer detection by collectively using the two types of information in social media. Motivated by psychological findings in physical world, I investigate whether sentiment analysis can help spammer detection in online social media. In particular, I conduct an exploratory study to analyze the sentiment differences between spammers and normal users; and present a novel method to incorporate sentiment information into social spammer detection framework. Given the rapidly evolving nature, I propose a novel framework to efficiently reflect the effect of newly emerging social spammers. To tackle the problem of lack of labeling data in social media, I study how to incorporate network information into text content modeling, and design strategies to select the most representative and informative instances from social media for labeling. Motivated by publicly available label information from other media platforms, I propose to make use of knowledge learned from cross-media to help spammer detection on social media.
ContributorsHu, Xia, Ph.D (Author) / Liu, Huan (Thesis advisor) / Kambhampati, Subbarao (Committee member) / Ye, Jieping (Committee member) / Faloutsos, Christos (Committee member) / Arizona State University (Publisher)
Created2015
153030-Thumbnail Image.png
Description
Sarcasm is a nuanced form of language where usually, the speaker explicitly states the opposite of what is implied. Imbued with intentional ambiguity and subtlety, detecting sarcasm is a difficult task, even for humans. Current works approach this challenging problem primarily from a linguistic perspective, focusing on the lexical and

Sarcasm is a nuanced form of language where usually, the speaker explicitly states the opposite of what is implied. Imbued with intentional ambiguity and subtlety, detecting sarcasm is a difficult task, even for humans. Current works approach this challenging problem primarily from a linguistic perspective, focusing on the lexical and syntactic aspects of sarcasm. In this thesis, I explore the possibility of using behavior traits intrinsic to users of sarcasm to detect sarcastic tweets. First, I theorize the core forms of sarcasm using findings from the psychological and behavioral sciences, and some observations on Twitter users. Then, I develop computational features to model the manifestations of these forms of sarcasm using the user's profile information and tweets. Finally, I combine these features to train a supervised learning model to detect sarcastic tweets. I perform experiments to extensively evaluate the proposed behavior modeling approach and compare with the state-of-the-art.
ContributorsRajadesingan, Ashwin (Author) / Liu, Huan (Thesis advisor) / Kambhampati, Subbarao (Committee member) / Pon-Barry, Heather (Committee member) / Arizona State University (Publisher)
Created2014
153872-Thumbnail Image.png
Description
With the rise of social media, user-generated content has become available at an unprecedented scale. On Twitter, 1 billion tweets are posted every 5 days and on Facebook, 20 million links are shared every 20 minutes. These massive collections of user-generated content have introduced the human behavior's big-data.

This big data

With the rise of social media, user-generated content has become available at an unprecedented scale. On Twitter, 1 billion tweets are posted every 5 days and on Facebook, 20 million links are shared every 20 minutes. These massive collections of user-generated content have introduced the human behavior's big-data.

This big data has brought about countless opportunities for analyzing human behavior at scale. However, is this data enough? Unfortunately, the data available at the individual-level is limited for most users. This limited individual-level data is often referred to as thin data. Hence, researchers face a big-data paradox, where this big-data is a large collection of mostly limited individual-level information. Researchers are often constrained to derive meaningful insights regarding online user behavior with this limited information. Simply put, they have to make thin data thick.

In this dissertation, how human behavior's thin data can be made thick is investigated. The chief objective of this dissertation is to demonstrate how traces of human behavior can be efficiently gleaned from the, often limited, individual-level information; hence, introducing an all-inclusive user behavior analysis methodology that considers social media users with different levels of information availability. To that end, the absolute minimum information in terms of both link or content data that is available for any social media user is determined. Utilizing only minimum information in different applications on social media such as prediction or recommendation tasks allows for solutions that are (1) generalizable to all social media users and that are (2) easy to implement. However, are applications that employ only minimum information as effective or comparable to applications that use more information?

In this dissertation, it is shown that common research challenges such as detecting malicious users or friend recommendation (i.e., link prediction) can be effectively performed using only minimum information. More importantly, it is demonstrated that unique user identification can be achieved using minimum information. Theoretical boundaries of unique user identification are obtained by introducing social signatures. Social signatures allow for user identification in any large-scale network on social media. The results on single-site user identification are generalized to multiple sites and it is shown how the same user can be uniquely identified across multiple sites using only minimum link or content information.

The findings in this dissertation allows finding the same user across multiple sites, which in turn has multiple implications. In particular, by identifying the same users across sites, (1) patterns that users exhibit across sites are identified, (2) how user behavior varies across sites is determined, and (3) activities that are observed only across sites are identified and studied.
ContributorsZafarani, Reza, 1983- (Author) / Liu, Huan (Thesis advisor) / Kambhampati, Subbarao (Committee member) / Xue, Guoliang (Committee member) / Leskovec, Jure (Committee member) / Arizona State University (Publisher)
Created2015
157582-Thumbnail Image.png
Description
The rapid advancements of technology have greatly extended the ubiquitous nature of smartphones acting as a gateway to numerous social media applications. This brings an immense convenience to the users of these applications wishing to stay connected to other individuals through sharing their statuses, posting their opinions, experiences, suggestions, etc

The rapid advancements of technology have greatly extended the ubiquitous nature of smartphones acting as a gateway to numerous social media applications. This brings an immense convenience to the users of these applications wishing to stay connected to other individuals through sharing their statuses, posting their opinions, experiences, suggestions, etc on online social networks (OSNs). Exploring and analyzing this data has a great potential to enable deep and fine-grained insights into the behavior, emotions, and language of individuals in a society. This proposed dissertation focuses on utilizing these online social footprints to research two main threads – 1) Analysis: to study the behavior of individuals online (content analysis) and 2) Synthesis: to build models that influence the behavior of individuals offline (incomplete action models for decision-making).

A large percentage of posts shared online are in an unrestricted natural language format that is meant for human consumption. One of the demanding problems in this context is to leverage and develop approaches to automatically extract important insights from this incessant massive data pool. Efforts in this direction emphasize mining or extracting the wealth of latent information in the data from multiple OSNs independently. The first thread of this dissertation focuses on analytics to investigate the differentiated content-sharing behavior of individuals. The second thread of this dissertation attempts to build decision-making systems using social media data.

The results of the proposed dissertation emphasize the importance of considering multiple data types while interpreting the content shared on OSNs. They highlight the unique ways in which the data and the extracted patterns from text-based platforms or visual-based platforms complement and contrast in terms of their content. The proposed research demonstrated that, in many ways, the results obtained by focusing on either only text or only visual elements of content shared online could lead to biased insights. On the other hand, it also shows the power of a sequential set of patterns that have some sort of precedence relationships and collaboration between humans and automated planners.
ContributorsManikonda, Lydia (Author) / Kambhampati, Subbarao (Thesis advisor) / Liu, Huan (Committee member) / Li, Baoxin (Committee member) / De Choudhury, Munmun (Committee member) / Kamar, Ece (Committee member) / Arizona State University (Publisher)
Created2019