Matching Items (789)
Filtering by

Clear all filters

ContributorsChang, Ruihong (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-29
152977-Thumbnail Image.png
Description
Climate and its influence on hydrology and weathering is a key driver of surface processes on Earth. Despite its clear importance to hazard generation, fluvial sediment transport and erosion, the drawdown of atmospheric CO2 via the rock cycle, and feedbacks between climate and tectonics, quantifying climatic controls on long-term erosion

Climate and its influence on hydrology and weathering is a key driver of surface processes on Earth. Despite its clear importance to hazard generation, fluvial sediment transport and erosion, the drawdown of atmospheric CO2 via the rock cycle, and feedbacks between climate and tectonics, quantifying climatic controls on long-term erosion rates has proven to be one of the grand problems in geomorphology. In fact, recent attempts addressing this problem using cosmogenic radionuclide (CRN) derived erosion rates suggest very weak climatic controls on millennial-scale erosion rates contrary to expectations. In this work, two challenges are addressed that may be impeding progress on this problem.

The first challenge is choosing appropriate climate metrics that are closely tied to erosional processes. For example, in fluvial landscapes, most runoff events do little to no geomorphic work due to erosion thresholds, and event-scale variability dictates how frequently these thresholds are exceeded. By analyzing dense hydroclimatic datasets in the contiguous U.S. and Puerto Rico, we show that event-scale runoff variability is only loosely related to event-scale rainfall variability. Instead, aridity and fractional evapotranspiration (ET) losses are much better predictors of runoff variability. Importantly, simple hillslope-scale soil water balance models capture major aspects of the observed relation between runoff variability and fractional ET losses. Together, these results point to the role of vegetation water use as a potential key to relating mean hydrologic partitioning with runoff variability.

The second challenge is that long-term erosion rates are expected to balance rock uplift rates as landscapes approach topographic steady state, regardless of hydroclimatic setting. This is illustrated with new data along the Main Gulf Escarpment, Baja, Mexico. Under this conceptual framework, climate is not expected to set the erosion rate, but rather the erosional efficiency of the system, or the steady-state relief required for erosion to keep up with tectonically driven uplift rates. To assess differences in erosional efficiency across landscapes experiencing different climatic regimes, we contrast new CRN data from tectonically active landscapes in Baja, Mexico and southern California (arid) with northern Honduras (very humid) alongside other published global data from similar hydroclimatic settings. This analysis shows how climate does, in fact, set functional relationships between topographic metrics like channel steepness and long-term erosion rates. However, we also show that relatively small differences in rock erodibility and incision thresholds can easily overprint hydroclimatic controls on erosional efficiency motivating the need for more field based constraints on these important variables.
ContributorsRossi, Matthew (Author) / Whipple, Kelin X (Thesis advisor) / DeVecchio, Duane E (Committee member) / Vivoni, Enrique R (Committee member) / Arrowsmith, J Ramon (Committee member) / Heimsath, Arjun M (Committee member) / Arizona State University (Publisher)
Created2014
150254-Thumbnail Image.png
Description
Conceptual change has been a large part of science education research for several decades due to the fact that it allows teachers to think about what students' preconceptions are and how to change these to the correct scientific conceptions. To have students change their preconceptions teachers need to allow students

Conceptual change has been a large part of science education research for several decades due to the fact that it allows teachers to think about what students' preconceptions are and how to change these to the correct scientific conceptions. To have students change their preconceptions teachers need to allow students to confront what they think they know in the presence of the phenomena. Students then collect and analyze evidence pertaining to the phenomena. The goal in the end is for students to reorganize their concepts and change or correct their preconceptions, so that they hold more accurate scientific conceptions. The purpose of this study was to investigate how students' conceptions of the Earth's surface, specifically weathering and erosion, change using the conceptual change framework to guide the instructional decisions. The subjects of the study were a class of 25 seventh grade students. This class received a three-week unit on weathering and erosion that was structured using the conceptual change framework set by Posner, Strike, Hewson, and Gertzog (1982). This framework starts by looking at students' misconceptions, then uses scientific data that students collect to confront their misconceptions. The changes in students' conceptions were measured by a pre concept sketch and post concept sketch. The results of this study showed that the conceptual change framework can modify students' preconceptions of weathering and erosion to correct scientific conceptions. There was statistical significant difference between students' pre concept sketches and post concept sketches scores. After examining the concept sketches, differences were found in how students' concepts had changed from pre to post concept sketch. Further research needs to be done with conceptual change and the geosciences to see if conceptual change is an effective method to use to teach students about the geosciences.
ContributorsTillman, Ashley (Author) / Luft, Julie (Thesis advisor) / Middleton, James (Committee member) / Semken, Steven (Committee member) / Arizona State University (Publisher)
Created2011
153808-Thumbnail Image.png
Description
Four Souvenirs for Violin and Piano was composed by Paul Schoenfeld (b.1947) in 1990 as a showpiece, spotlighting the virtuosity of both the violin and piano in equal measure. Each movement is a modern interpretation of a folk or popular genre, re- envisioned over intricate jazz harmonies and rhythms. The

Four Souvenirs for Violin and Piano was composed by Paul Schoenfeld (b.1947) in 1990 as a showpiece, spotlighting the virtuosity of both the violin and piano in equal measure. Each movement is a modern interpretation of a folk or popular genre, re- envisioned over intricate jazz harmonies and rhythms. The work was commissioned by violinist Lev Polyakin, who specifically requested some short pieces that could be performed in a local jazz establishment named Night Town in Cleveland, Ohio. The result is a work that is approximately fifteen minutes in length. Schoenfeld is a respected composer in the contemporary classical music community, whose Café Music (1986) for piano trio has recently become a staple of the standard chamber music repertoire. Many of his other works, however, remain in relative obscurity. It is the focus of this document to shed light on at least one other notable composition; Four Souvenirs for Violin and Piano. Among the topics to be discussed regarding this piece are a brief history behind the genesis of this composition, a structural summary of the entire work and each of its movements, and an appended practice guide based on interview and coaching sessions with the composer himself. With this project, I hope to provide a better understanding and appreciation of this work.
ContributorsJanczyk, Kristie Annette (Author) / Ryan, Russell (Thesis advisor) / Campbell, Andrew (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2015
156832-Thumbnail Image.png
Description
Drylands (arid and semi-arid grassland ecosystems) cover about 40% of the Earth's surface and support over 40% of the human population, most of which is in emerging economies. Human development of drylands leads to topsoil loss, and over the last 160 years, woody plants have encroached on drylands, both of

Drylands (arid and semi-arid grassland ecosystems) cover about 40% of the Earth's surface and support over 40% of the human population, most of which is in emerging economies. Human development of drylands leads to topsoil loss, and over the last 160 years, woody plants have encroached on drylands, both of which have implications for maintaining soil viability. Understanding the spatial variability in erosion and soil organic carbon and total nitrogen under varying geomorphic and biotic forcing in drylands is therefore of paramount importance. This study focuses on how two plants, palo verde (Parkinsonia microphylla, nitrogen-fixing) and jojoba (Simmondsia chinensis, non-nitrogen fixing), affect sediment transport and soil organic carbon and total nitrogen pools in a dryland environment north of Phoenix, Arizona. Bulk samples were systematically collected from the top 10 cm of soil in twelve catenae to control for the existence and type of plants, location to canopy (sub- or intercanopy, up- or downslope), aspect, and distance from the divide. Samples were measured for soil organic carbon and total nitrogen and an unmanned aerial system-derived digital elevation map of the field site was created for spatial analysis. A subset of the samples was measured for the short-lived isotopes 137Cs and 210Pbex, which serve as proxy erosion rates. Erosional soils were found to have less organic carbon and total nitrogen than depositional soils. There were clear differences in the data between the two plant types: jojoba catenae had higher short-lived isotope activity, lower carbon and nitrogen, and smaller canopies than those of palo verde, suggesting lower erosion rates and nutrient contributions from jojoba plants. This research quantifies the importance of biota on influencing hillslope and soil dynamics in a semi-arid field site in central AZ and finishes with a discussion on the global implications for soil sustainability.
ContributorsAlter, Samuel (Author) / Heimsath, Arjun M (Thesis advisor) / Throop, Heather L (Committee member) / Walker, Ian J (Committee member) / Arizona State University (Publisher)
Created2018
ContributorsASU Library. Music Library (Publisher)
Created2018-02-23
ContributorsWhite, Aaron (Performer) / Kim, Olga (Performer) / Hammond, Marinne (Performer) / Shaner, Hayden (Performer) / Yoo, Katie (Performer) / Shoemake, Crista (Performer) / Gebe, Vladimir, 1987- (Performer) / Wills, Grace (Performer) / McKinch, Riley (Performer) / Freshmen Four (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-27
ContributorsRosenfeld, Albor (Performer) / Pagano, Caio, 1940- (Performer) / ASU Library. Music Library (Publisher)
Created2018-10-03
ContributorsASU Library. Music Library (Publisher)
Created2018-10-04
ContributorsCao, Yuchen (Performer) / Chen, Sicong (Performer) / Soberano, Chino (Performer) / Nam, Michelle (Performer) / Collins, Clarice (Performer) / Witt, Juliana (Performer) / Liu, Jingting (Performer) / Chen, Neilson (Performer) / Zhang, Aihua (Performer) / Jiang, Zhou (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-25