Matching Items (6)
Filtering by

Clear all filters

153808-Thumbnail Image.png
Description
Four Souvenirs for Violin and Piano was composed by Paul Schoenfeld (b.1947) in 1990 as a showpiece, spotlighting the virtuosity of both the violin and piano in equal measure. Each movement is a modern interpretation of a folk or popular genre, re- envisioned over intricate jazz harmonies and rhythms. The

Four Souvenirs for Violin and Piano was composed by Paul Schoenfeld (b.1947) in 1990 as a showpiece, spotlighting the virtuosity of both the violin and piano in equal measure. Each movement is a modern interpretation of a folk or popular genre, re- envisioned over intricate jazz harmonies and rhythms. The work was commissioned by violinist Lev Polyakin, who specifically requested some short pieces that could be performed in a local jazz establishment named Night Town in Cleveland, Ohio. The result is a work that is approximately fifteen minutes in length. Schoenfeld is a respected composer in the contemporary classical music community, whose Café Music (1986) for piano trio has recently become a staple of the standard chamber music repertoire. Many of his other works, however, remain in relative obscurity. It is the focus of this document to shed light on at least one other notable composition; Four Souvenirs for Violin and Piano. Among the topics to be discussed regarding this piece are a brief history behind the genesis of this composition, a structural summary of the entire work and each of its movements, and an appended practice guide based on interview and coaching sessions with the composer himself. With this project, I hope to provide a better understanding and appreciation of this work.
ContributorsJanczyk, Kristie Annette (Author) / Ryan, Russell (Thesis advisor) / Campbell, Andrew (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2015
154761-Thumbnail Image.png
Description
Samuel Máynez Prince (1886-1966), was a prolific and important Mexican musician. Prince’s musical style followed the trends of the nineteenth-century salon music genre. His compositions include lullabies, songs, dances, marches, mazurkas, waltzes, and revolutionary anthems. Prince’s social status and performances in the famed Café Colón in Mexico City increased his

Samuel Máynez Prince (1886-1966), was a prolific and important Mexican musician. Prince’s musical style followed the trends of the nineteenth-century salon music genre. His compositions include lullabies, songs, dances, marches, mazurkas, waltzes, and revolutionary anthems. Prince’s social status and performances in the famed Café Colón in Mexico City increased his popularity among high-ranking political figures during the time of the Mexican Revolution as well as his status in the Mexican music scene.

Unfortunately there is virtually no existing scholarship on Prince and even basic information regarding his life and works is not readily available. The lack of organization of the manuscript scores and the absence of dates of his works has further pushed the composer into obscurity. An investigation therefore was necessary in order to explore the neglected aspects of the life and works of Prince as a violinist and composer. This document is the result of such an investigation by including extensive new biographical information, as well as the first musical analysis and edition of the complete recovered works for violin and piano.

In order to fill the gaps present in the limited biographical information regarding Prince’s life, investigative research was conducted in Mexico City. Information was drawn from archives of the composer’s grandchildren, the Palacio de Bellas Artes, the Conservatorio Nacional de Música de México, and the Orquesta Sinfónica Nacional. The surviving relatives provided first-hand details on events in the composer’s life; one also offered the researcher access to their personal archive including, important life documents, photographs, programs from concert performances, and manuscript scores of the compositions. Establishing connections with the relatives also led the researcher to examining the violins owned and used by the late violinist/composer.

This oral history approach led to new and updated information, including the revival of previously unpublished music for violin and piano. These works are here compiled in an edition that will give students, teachers, and music-lovers access to this unknown repertoire. Finally, this research seeks to promote the beauty and nuances of Mexican salon music, and the complete works for violin and piano of Samuel Máynez Prince in particular.
ContributorsEkenes, Spencer Arvin (Author) / McLin, Katherine (Thesis advisor) / Feisst, Sabine (Committee member) / Jiang, Danwen (Committee member) / Arizona State University (Publisher)
Created2016
147753-Thumbnail Image.png
Description

The researchers build a drone with a grasping mechanism to wrap around branches to perch. The design process and methodology are discussed along with the software and hardware configuration. The researchers explain the influences on the design and the possibilities for what it could inspire.

ContributorsDowney, Matthew Evan (Co-author) / Macias, Jose (Co-author) / Goldenberg, Edward (Co-author) / Zhang, Wenlong (Thesis director) / Aukes, Daniel (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The researchers build a drone with a grasping mechanism to wrap around branches to perch. The design process and methodology are discussed along with the software and hardware configuration. The researchers explain the influences on the design and the possibilities for what it could inspire.

ContributorsGoldenberg, Edward Bradley (Co-author) / Macias, Jose Carlos (Co-author) / Downey, Matthew (Co-author) / Zhang, Wenlong (Thesis director) / Aukes, Daniel M. (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147989-Thumbnail Image.png
Description

The majority of drones are extremely simple, their functions include flight and sometimes recording video and audio. While drone technology has continued to improve these functions, particularly flight, additional functions have not been added to mainstream drones. Although these basic functions serve as a good framework for drone designs, it

The majority of drones are extremely simple, their functions include flight and sometimes recording video and audio. While drone technology has continued to improve these functions, particularly flight, additional functions have not been added to mainstream drones. Although these basic functions serve as a good framework for drone designs, it is now time to extend off from this framework. With this Honors Thesis project, we introduce a new function intended to eventually become common to drones. This feature is a grasping mechanism that is capable of perching on branches and carrying loads within the weight limit. This concept stems from the natural behavior of many kinds of insects. It paves the way for drones to further imitate the natural design of flying creatures. Additionally, it serves to advocate for dynamic drone frames, or morphing drone frames, to become more common practice in drone designs.

ContributorsMacias, Jose Carlos (Co-author) / Goldenberg, Edward Bradley (Co-author) / Downey, Matthew (Co-author) / Zhang, Wenlong (Thesis director) / Aukes, Daniel (Committee member) / Human Systems Engineering (Contributor) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
156672-Thumbnail Image.png
Description
Existing robotic excavation research has been primarily focused on lunar mining missions or simple traffic control in confined tunnels, however little work attempts to bring collective excavation into the realm of human infrastructure. This thesis explores a decentralized approach to excavation processes, where traffic laws are borrowed from swarms of

Existing robotic excavation research has been primarily focused on lunar mining missions or simple traffic control in confined tunnels, however little work attempts to bring collective excavation into the realm of human infrastructure. This thesis explores a decentralized approach to excavation processes, where traffic laws are borrowed from swarms of fire ants (Solenopsis invicta) or termites (Coptotermes formosanus) to create decision rules for a swarm of robots working together and organizing effectively to create a desired final excavated pattern.

First, a literature review of the behavioral rules of different types of insect colonies and the resulting structural patterns over the course of excavation was conducted. After identifying pertinent excavation laws, three different finite state machines were generated that relate to construction, search and rescue operations, and extraterrestrial exploration. After analyzing these finite state machines, it became apparent that they all shared a common controller. Then, agent-based NetLogo software was used to simulate a swarm of agents that run this controller, and a model for excavating behaviors and patterns was fit to the simulation data. This model predicts the tunnel shapes formed in the simulation as a function of the swarm size and a time delay, called the critical waiting period, in one of the state transitions. Thus, by controlling the individual agents' behavior, it was possible to control the structural outcomes of collective excavation in simulation.

To create an experimental testbed that could be used to physically implement the controller, a small foldable robotic platform was developed, and it's capabilities were tested in granular media. In order to characterize the granular media, force experiments were conducted and parameters were measured for resistive forces during an excavation cycle. The final experiment verified the robot's ability to engage in excavation and deposition, and to determine whether or not to begin the critical waiting period. This testbed can be expanded with multiple robots to conduct small-scale experiments on collective excavation, such as further exploring the effects of the critical waiting period on the resulting excavation pattern. In addition, investigating other factors like tuning digging efficiency or deposition proximity could help to transition the proposed bio-inspired swarm excavation controllers to implementation in real-world applications.
ContributorsHaggerty, Zz Mae (Author) / Berman, Spring M (Thesis advisor) / Aukes, Daniel (Committee member) / Marvi, Hamid (Committee member) / Arizona State University (Publisher)
Created2018