Matching Items (789)
Filtering by

Clear all filters

151342-Thumbnail Image.png
Description
Human-induced rapid environmental change (HIREC) influences nearly all of Earth's ecosystems through processes such as urbanization. Previous studies have found that urbanization influences biodiversity patterns, often yielding an increase in the abundance of a few urban-adapted taxa at the expense of native species diversity. The western black widow spider, Latrodectus

Human-induced rapid environmental change (HIREC) influences nearly all of Earth's ecosystems through processes such as urbanization. Previous studies have found that urbanization influences biodiversity patterns, often yielding an increase in the abundance of a few urban-adapted taxa at the expense of native species diversity. The western black widow spider, Latrodectus hesperus, is a medically-important pest species that often forms dense urban subpopulations (i.e., infestations) relative to the low-density subpopulations found throughout undisturbed, desert habitat. Here, I employ field and laboratory studies to examine the population ecology and stoichiometry of this urban pest to increase our understanding of the mechanisms underlying its success. The population ecology of ten black widow subpopulations spread across metropolitan Phoenix, AZ was examined during the peak breeding season (June-August). This study revealed that arthropod prey abundance, female mass and population density of females showed significant spatial variation across the ten subpopulations. Additionally, prey abundance and foraging success, measured as the number of carcasses found in webs, were a strong determinant of female mass and population density within each subpopulation. To test the mechanisms that drive black widow infestations, I used ecological stoichiometry to examine the nutrient (nitrogen and phosphorus) composition of spiders and arthropod prey from urban habitat, desert habitat and a laboratory diet regime. These studies revealed that (1) spiders are more nutrient rich than cricket prey in the field, (2) spider subpopulations exhibit significant spatial variation in their nitrogen composition, (3) nutrient composition of urban spider subpopulations does not differ significantly from Sonoran desert subpopulations, (4) laboratory-reared spiders fed a diet of only laboratory-reared crickets are more nitrogen and phosphorus limited than field-captured spiders, and (5) cannibalism by laboratory-reared spiders alleviated phosphorus limitation, but not nitrogen limitation, when compared to field-captured spiders. This work highlights the need to examine the population ecology of species relationships, such as predator-prey dynamics, to fully understand the fecundity and population growth of urban pest species. Moreover, the integration of population ecology and stoichiometry illustrates the need to address mechanisms like nutrient limitation that may explain why urban pest populations thrive and native species diversity suffers following HIREC.
ContributorsTrubl, Patricia (Author) / Johnson, James C. (Thesis advisor) / Rutowski, Ronald (Thesis advisor) / McGraw, Kevin (Committee member) / Arizona State University (Publisher)
Created2012
ContributorsChang, Ruihong (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-29
152972-Thumbnail Image.png
Description

Though cities occupy only a small percentage of Earth's terrestrial surface, humans concentrated in urban areas impact ecosystems at local, regional and global scales. I examined the direct and indirect ecological outcomes of human activities on both managed landscapes and protected native ecosystems in and around cities. First, I used

Though cities occupy only a small percentage of Earth's terrestrial surface, humans concentrated in urban areas impact ecosystems at local, regional and global scales. I examined the direct and indirect ecological outcomes of human activities on both managed landscapes and protected native ecosystems in and around cities. First, I used highly managed residential yards, which compose nearly half of the heterogeneous urban land area, as a model system to examine the ecological effects of people's management choices and the social drivers of those decisions. I found that a complex set of individual and institutional social characteristics drives people's decisions, which in turn affect ecological structure and function across scales from yards to cities. This work demonstrates the link between individuals' decision-making and ecosystem service provisioning in highly managed urban ecosystems.

Second, I examined the distribution of urban-generated air pollutants and their complex ecological outcomes in protected native ecosystems. Atmospheric carbon dioxide (CO2), reactive nitrogen (N), and ozone (O3) are elevated near human activities and act as both resources and stressors to primary producers, but little is known about their co-occurring distribution or combined impacts on ecosystems. I investigated the urban "ecological airshed," including the spatial and temporal extent of N deposition, as well as CO2 and O3 concentrations in native preserves in Phoenix, Arizona and the outlying Sonoran Desert. I found elevated concentrations of ecologically relevant pollutants co-occur in both urban and remote native lands at levels that are likely to affect ecosystem structure and function. Finally, I tested the combined effects of CO2, N, and O3 on the dominant native and non-native herbaceous desert species in a multi-factor dose-response greenhouse experiment. Under current and predicted future air quality conditions, the non-native species (Schismus arabicus) had net positive growth despite physiological stress under high O3 concentrations. In contrast, the native species (Pectocarya recurvata) was more sensitive to O3 and, unlike the non-native species, did not benefit from the protective role of CO2. These results highlight the vulnerability of native ecosystems to current and future air pollution over the long term. Together, my research provides empirical evidence for future policies addressing multiple stressors in urban managed and native landscapes.

ContributorsMiessner Cook, Elizabeth (Author) / Hall, Sharon J (Thesis advisor) / Boone, Christopher G (Committee member) / Collins, Scott L. (Committee member) / Grimm, Nancy (Committee member) / Arizona State University (Publisher)
Created2014
150412-Thumbnail Image.png
Description
With the ongoing drought surpassing a decade in Arizona, scholars, water managers and decision-makers have heightened attention to the availability of water resources, especially in rapidly growing regions where demand may outgrow supplies or outpace the capacity of the community water systems. Community water system managing entities and the biophysical

With the ongoing drought surpassing a decade in Arizona, scholars, water managers and decision-makers have heightened attention to the availability of water resources, especially in rapidly growing regions where demand may outgrow supplies or outpace the capacity of the community water systems. Community water system managing entities and the biophysical and social characteristics of a place mediate communities' vulnerability to hazards such as drought and long-term climate change. The arid southwestern Phoenix metropolitan area is illustrative of the challenges that developed urban areas in arid climates face globally as population growth and climate change stress already fragile human-environmental systems. This thesis reveals the factors abating and exacerbating differential community water system vulnerability to water scarcity in communities simultaneously facing drought and rapid peri-urban growth. Employing a grounded, qualitative comparative case study approach, this thesis explores the interaction of social, biophysical and institutional factors as they effect the exposure, sensitivity and adaptive capacity of community water systems in Cave Creek and Buckeye, Arizona. Buckeye, once a small agricultural town in the West Valley, is wholly dependent on groundwater and currently planning for massive development to accommodate 218,591 new residents by 2020. Amid desert hills and near Tonto National Forest in the North Valley, Cave Creek is an upscale residential community suffering frequent water outages due to aging infrastructure and lack of system redundancy. Analyzing interviews, media accounts and policy documents, a narrative was composed explaining how place based factors, nested within a regional institutional water management framework, impact short and long-term vulnerability. This research adds to the library of vulnerability assessments completed using Polsky et al.'s Vulnerability Scoping Diagram and serves a pragmatic need assisting in the development of decision making tools that better represent the drivers of placed based vulnerability in arid metropolitan regions.
ContributorsZautner, Lilah (Author) / Larson, Kelli (Thesis advisor) / Bolin, Bob (Committee member) / Chhetri, Netra (Committee member) / Arizona State University (Publisher)
Created2011
153808-Thumbnail Image.png
Description
Four Souvenirs for Violin and Piano was composed by Paul Schoenfeld (b.1947) in 1990 as a showpiece, spotlighting the virtuosity of both the violin and piano in equal measure. Each movement is a modern interpretation of a folk or popular genre, re- envisioned over intricate jazz harmonies and rhythms. The

Four Souvenirs for Violin and Piano was composed by Paul Schoenfeld (b.1947) in 1990 as a showpiece, spotlighting the virtuosity of both the violin and piano in equal measure. Each movement is a modern interpretation of a folk or popular genre, re- envisioned over intricate jazz harmonies and rhythms. The work was commissioned by violinist Lev Polyakin, who specifically requested some short pieces that could be performed in a local jazz establishment named Night Town in Cleveland, Ohio. The result is a work that is approximately fifteen minutes in length. Schoenfeld is a respected composer in the contemporary classical music community, whose Café Music (1986) for piano trio has recently become a staple of the standard chamber music repertoire. Many of his other works, however, remain in relative obscurity. It is the focus of this document to shed light on at least one other notable composition; Four Souvenirs for Violin and Piano. Among the topics to be discussed regarding this piece are a brief history behind the genesis of this composition, a structural summary of the entire work and each of its movements, and an appended practice guide based on interview and coaching sessions with the composer himself. With this project, I hope to provide a better understanding and appreciation of this work.
ContributorsJanczyk, Kristie Annette (Author) / Ryan, Russell (Thesis advisor) / Campbell, Andrew (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2015
154161-Thumbnail Image.png
Description
Often, when thinking of cities we envision designed landscapes, where people regulate everything from water to weeds, ultimately resulting in an ecosystem decoupled from biophysical processes. It is unclear, however, what happens when the people regulating these extensively managed landscapes come under stress, whether from unexpected economic fluctuations or from

Often, when thinking of cities we envision designed landscapes, where people regulate everything from water to weeds, ultimately resulting in an ecosystem decoupled from biophysical processes. It is unclear, however, what happens when the people regulating these extensively managed landscapes come under stress, whether from unexpected economic fluctuations or from changing climate norms. The overarching question of my dissertation research was: How does urban vegetation change in response to human behavior? To answer this question, I conducted multiscale research in an arid urban ecosystem as well as in a virtual desert city. I used a combination of long-term data and agent-based modeling to examine changes in vegetation across a range of measures influenced by biophysical, climate, institutional, and socioeconomic drivers. At the regional scale, total plant species diversity increased from 2000 to 2010, while species composition became increasingly homogeneous in urban and agricultural areas. At the residential scale, I investigated the effects of biophysical and socioeconomic drivers – the Great Recession of 2007-2010 in particular – on changing residential yard vegetation in Phoenix, AZ. Socioeconomic drivers affected plant composition and increasing richness, but the housing boom from 2000 through 2005 had a stronger influence on vegetation change than the subsequent recession. Surprisingly, annual plant species remained coupled to winter precipitation despite my expectation that their dynamics might be driven by socioeconomic fluctuations. In a modeling experiment, I examined the relative strength of psychological, social, and governance influences on large-scale urban land cover in a desert city. Model results suggested that social norms may be strong enough to lead to large-scale conversion to low water use residential landscaping, and governance may be unnecessary to catalyze residential landscape conversion under the pressure of extreme drought conditions. Overall, my dissertation research showed that urban vegetation is dynamic, even under the presumably stabilizing influence of human management activities. Increasing climate pressure, unexpected socioeconomic disturbances, growing urban populations, and shifting policies all contribute to urban vegetation dynamics. Incorporating these findings into planning policies will contribute to the sustainable management of urban ecosystems.
ContributorsRipplinger, Julie (Author) / Franklin, Janet (Thesis advisor) / Collins, Scott L. (Thesis advisor) / Anderies, John M (Committee member) / Childers, Daniel L. (Committee member) / York, Abigail (Committee member) / Arizona State University (Publisher)
Created2015
157082-Thumbnail Image.png
Description
The recent emergence of global ‘megafires’ has made it imperative to better understand the role of humans in altering the size, distribution, and seasonality of fires. The dynamic relationship between humans and fire is not a recent phenomenon; rather, fire has deep roots in our biological and cultural evolution. Because

The recent emergence of global ‘megafires’ has made it imperative to better understand the role of humans in altering the size, distribution, and seasonality of fires. The dynamic relationship between humans and fire is not a recent phenomenon; rather, fire has deep roots in our biological and cultural evolution. Because of its long-term perspective, archaeology is uniquely positioned to investigate the social and ecological drivers behind anthropogenic fire. However, the field faces challenges in creating solution-oriented research for managing fire in the future. In this dissertation, I originate new methods and approaches to archaeological data that enable us to interpret humans’ long-term influences on fire regimes. I weave together human niche construction theory and ecological resilience, creating connections between archaeology, paleoecology, and fire ecology. Three, stand-alone studies illustrate the usefulness of these methods and theories for charting changes in land-use, fire-regimes, and vegetation communities during the Neolithic Transition (7600 - 3800 cal. BP) in eastern Spain. In the first study (Ch. II), I analyze archaeological survey data using Bayesian methods to extract land-use intensities from mixed surface assemblages from a case study in the Canal de Navarrés. The second study (Ch. III) builds on the archaeological data collected computational model of landscape fire, charcoal dispersion, and deposition to test how multiple models of natural and anthropogenic fire activity contributed to the formation a single sedimentary charcoal dataset from the Canal de Navarrés. Finally, the third study (Ch. IV) incorporates the modeling and data generated in the previous chapters into sampling and analysis of sedimentary charcoal data from alluvial contexts in three study areas throughout eastern Spain. Results indicate that anthropogenic fire played a significant role in the creation of agricultural landscapes during the Neolithic period, but sustained, low-intensity burning after the late Neolithic period maintained the human created niche for millennia beyond the arrival of agro-pastoral land-use. With global fire activity on the rise, it is vital to incorporate perspectives on the origins, development, and maintenance of human-fire relationships to effectively manage fire in today’s coupled social-ecological landscapes.
ContributorsSnitker, Grant (Author) / Barton, Michael (Thesis advisor) / Morehart, Christopher (Committee member) / Franklin, Janet (Committee member) / Arizona State University (Publisher)
Created2019
ContributorsASU Library. Music Library (Publisher)
Created2018-02-23
ContributorsWhite, Aaron (Performer) / Kim, Olga (Performer) / Hammond, Marinne (Performer) / Shaner, Hayden (Performer) / Yoo, Katie (Performer) / Shoemake, Crista (Performer) / Gebe, Vladimir, 1987- (Performer) / Wills, Grace (Performer) / McKinch, Riley (Performer) / Freshmen Four (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-27
ContributorsRosenfeld, Albor (Performer) / Pagano, Caio, 1940- (Performer) / ASU Library. Music Library (Publisher)
Created2018-10-03