Matching Items (392)
ContributorsWard, Geoffrey Harris (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-18
152090-Thumbnail Image.png
Description
Photosynthesis, one of the most important processes in nature, has provided an energy basis for nearly all life on Earth, as well as the fossil fuels we use today to power modern society. This research aims to mimic the photosynthetic process of converting incident solar energy into chemical potential energy

Photosynthesis, one of the most important processes in nature, has provided an energy basis for nearly all life on Earth, as well as the fossil fuels we use today to power modern society. This research aims to mimic the photosynthetic process of converting incident solar energy into chemical potential energy in the form of a fuel via systems capable of carrying out photo-induced electron transfer to drive the production of hydrogen from water. Herein is detailed progress in using photo-induced stepwise electron transfer to drive the oxidation of water and reduction of protons to hydrogen. In the design, use of more blue absorbing porphyrin dyes to generate high-potential intermediates for oxidizing water and more red absorbing phthalocyanine dyes for forming the low potential charge needed for the production of hydrogen have been utilized. For investigating water oxidation at the photoanode, high potential porphyrins such as, bis-pyridyl porphyrins and pentafluorophenyl porphyrins have been synthesized and experiments have aimed at the co-immobilization of this dye with an IrO2-nH2O catalyst on TiO2. To drive the cathodic reaction of the water splitting photoelectrochemical cell, utilization of silicon octabutoxy-phthalocyanines have been explored, as they offer good absorption in the red to near infrared, coupled with low potential photo-excited states. Axially and peripherally substituted phthalocyanines bearing carboxylic anchoring groups for the immobilization on semiconductors such as TiO2 has been investigated. Ultimately, this work should culminate in a photoelectrochemical cell capable of splitting water to oxygen and hydrogen with the only energy input from light. A series of perylene dyes bearing multiple semi-conducting metal oxide anchoring groups have been synthesized and studied. Results have shown interfacial electron transfer between these perylenes and TiO2 nanoparticles encapsulated within reverse micelles and naked nanoparticles. The binding process was followed by monitoring the hypsochromic shift of the dye absorption spectra over time. Photoinduced electron transfer from the singlet excited state of the perylenes to the TiO2 conduction band is indicated by emission quenching of the TiO2-bound form of the dyes and confirmed by transient absorption measurements of the radical cation of the dyes and free carriers (injected electrons) in the TiO2.
ContributorsBergkamp, Jesse J (Author) / Moore, Ana L (Thesis advisor) / Mariño-Ochoa, Ernesto (Thesis advisor) / Gust, Devens J (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2013
152279-Thumbnail Image.png
Description
Natural photosynthesis dedicates specific proteins to achieve the modular division of the essential roles of solar energy harvesting, charge separation and carrier transport within natural photosynthesis. The modern understanding of the fundamental photochemistry by which natural photosynthesis operates is well advanced and solution state mimics of the key photochemical processes

Natural photosynthesis dedicates specific proteins to achieve the modular division of the essential roles of solar energy harvesting, charge separation and carrier transport within natural photosynthesis. The modern understanding of the fundamental photochemistry by which natural photosynthesis operates is well advanced and solution state mimics of the key photochemical processes have been reported previously. All of the early events in natural photosynthesis responsible for the conversion of solar energy to electric potential energy occur within proteins and phospholipid membranes that act as scaffolds for arranging the active chromophores. Accordingly, for creating artificial photovoltaic (PV) systems, scaffolds are required to imbue structure to the systems. An approach to incorporating modular design into solid-state organic mimics of the natural system is presented together with how conductive scaffolds can be utilized in organic PV systems. To support the chromophore arrays present within this design and to extract separated charges from within the structure, linear pyrazine-containing molecular ribbons were chosen as candidates for forming conductive linear scaffolds that could be functionalized orthogonally to the linear axis. A series of donor-wire-acceptor (D-W-A) compounds employing porphyrins as the donors and a C60 fullerene adduct as the acceptors have been synthesized for studying the ability of the pyrazine-containing hetero-aromatic wires to mediate photoinduced electron transfer between the porphyrin donor and fullerene acceptor. Appropriate substitutions were made and the necessary model compounds useful for dissecting the complex photochemistry that the series is expected to display were also synthesized. A dye was synthesized using a pyrazine-containing heteroaromatic spacer that features two porphyrin chromophores. The dye dramatically outperforms the control dye featuring the same porphyrin and a simple benzoic acid linker. A novel, highly soluble 6+kDa extended phthalocyanine was also synthesized and exhibits absorption out to 900nm. The extensive functionalization of the extended phthalocyanine core with dodecyl groups enabled purification and characterization of an otherwise insoluble entity. Finally, in the interest of incorporating modular design into plastic solar cells, a series of porphyrin-containing monomers have been synthesized that are intended to form dyadic and triadic molecular-heterojunction polymers with dedicated hole and electron transport pathways during electrochemical polymerization.
ContributorsWatson, Brian Lyndon (Author) / Gust, Devens (Thesis advisor) / Gould, Ian (Committee member) / Moore, Ana L (Committee member) / Arizona State University (Publisher)
Created2013
150715-Thumbnail Image.png
Description
Most of the sunlight powering natural photosynthesis is absorbed by antenna arrays that transfer, and regulate the delivery of excitation energy to reaction centers in the chloroplast where photosynthesis takes place. Under intense sunlight the plants and certain organisms cannot fully utilize all of the sunlight received by antennas and

Most of the sunlight powering natural photosynthesis is absorbed by antenna arrays that transfer, and regulate the delivery of excitation energy to reaction centers in the chloroplast where photosynthesis takes place. Under intense sunlight the plants and certain organisms cannot fully utilize all of the sunlight received by antennas and excess redox species are formed which could potentially harm them. To prevent this, excess energy is dissipated by antennas before it reaches to the reaction centers to initiate electron transfer needed in the next steps of photosynthesis. This phenomenon is called non-photochemical quenching (NPQ). The mechanism of NPQ is not fully understood, but the process is believed to be initiated by a drop in the pH in thylakoid lumen in cells. This causes changes in otherwise nonresponsive energy acceptors which accept the excess energy, preventing oversensitization of the reaction center. To mimic this phenomenon and get insight into the mechanism of NPQ, a novel pH sensitive dye 3'6'-indolinorhodamine was designed and synthesized which in a neutral solution stays in a closed (colorless) form and does not absorb light while at low pH it opens (colored) and absorbs light. The absorption of the dye overlaps porphyrin emission, thus making energy transfer from the porphyrin to the dye thermodynamically possible. Several self-regulating molecular model systems were designed and synthesized consisting of this dye and zinc porphyrins organized on a hexaphenylbenzene framework to functionally mimic the role of the antenna in NPQ. When a dye-zinc porphyrin dyad is dissolved in an organic solvent, the zinc porphyrin antenna absorbs and emits light by normal photophysical processes. Time resolved fluorescence experiments using the single-photon-timing method with excitation at 425 nm and emission at 600 nm yielded a lifetime of 2.09 ns for the porphyrin first excited singlet state. When acetic acid is added to the solution of the dyad, the pH sensitive dye opens and quenches the zinc porphyrin emission decreasing the lifetime of the porphyrin first excited singlet state to 23 ps, and converting the excitation energy to heat. Under similar experimental conditions in a neutral solution, a model hexad containing the dye and five zinc porphyrins organized on a hexaphenylbenzene core decays exponentially with a time constant of 2.1 ns, which is essentially the same lifetime as observed for related monomeric zinc porphyrins. When a solution of the hexad is acidified, the dye opens and quenches all porphyrin first excited singlet states to <40 ps. This converts the excitation energy to heat and renders the porphyrins kinetically incompetent to readily donate electrons by photoinduced electron transfer, thereby mimicking the role of the antenna in photosynthetic photoprotection.
ContributorsBhushan, Kul (Author) / Gust, Devens (Thesis advisor) / Moore, Ana (Committee member) / Hayes, Mark (Committee member) / Arizona State University (Publisher)
Created2012
ContributorsBolari, John (Performer) / ASU Library. Music Library (Publisher)
Created2018-10-04
ContributorsOftedahl, Paul (Performer) / ASU Library. Music Library (Publisher)
Created2018-09-29
ContributorsMarshall, Kimberly (Performer) / Meszler, Alexander (Performer) / Yatso, Toby (Narrator) / ASU Library. Music Library (Publisher)
Created2018-09-16
153645-Thumbnail Image.png
Description
Non-photochemical quenching (NPQ) is a photoprotective regulatory mechanism essential to the robustness of the photosynthetic apparatus of green plants. Energy flow within the low-light adapted reaction centers is dynamically optimized to match the continuously fluctuating light conditions found in nature. Activated by compartmentalized decreases in pH resulting from photosynthetic activity

Non-photochemical quenching (NPQ) is a photoprotective regulatory mechanism essential to the robustness of the photosynthetic apparatus of green plants. Energy flow within the low-light adapted reaction centers is dynamically optimized to match the continuously fluctuating light conditions found in nature. Activated by compartmentalized decreases in pH resulting from photosynthetic activity during periods of elevated photon flux, NPQ induces rapid thermal dissipation of excess excitation energy that would otherwise overwhelm the apparatus’s ability to consume it. Consequently, the frequency of charge separation decreases and the formation of potentially deleterious, high-energy intermediates slows, thereby reducing the threat of photodamage by disallowing their accumulation. Herein is described the synthesis and photophysical analysis of a molecular triad that mimics the effects of NPQ on charge separation within the photosynthetic reaction centers. Steady-state absorption and emission, time-resolved fluorescence, and transient absorption spectroscopies were used to demonstrate reversible quenching of the first singlet excited state affecting the quantum yield of charge separation by approximately one order of magnitude. As in the natural system, the populations of unquenched and quenched states and, therefore, the overall yields of charge separation were found to be dependent upon acid concentration.
ContributorsPahk, Ian (Author) / Gust, Devens (Thesis advisor) / Gould, Ian (Committee member) / Mujica, Vladimiro (Committee member) / Arizona State University (Publisher)
Created2015
154573-Thumbnail Image.png
Description
LiNbO3 and ZnO have shown great potential for photochemical surface reactions and specific photocatalytic processes. However, the efficiency of LiNbO3 is limited due to recombination or back reactions and ZnO exhibits a chemical instability in a liquid cell. In this dissertation, both materials were coated with precise thickness of metal

LiNbO3 and ZnO have shown great potential for photochemical surface reactions and specific photocatalytic processes. However, the efficiency of LiNbO3 is limited due to recombination or back reactions and ZnO exhibits a chemical instability in a liquid cell. In this dissertation, both materials were coated with precise thickness of metal oxide layers to passivate the surfaces and to enhance their photocatalytic efficiency. LiNbO3 was coated with plasma enhanced atomic layer deposited (PEALD) ZnO and Al2O3, and molecular beam deposited TiO2 and VO2. On the other hand, PEALD ZnO and single crystal ZnO were passivated with PEALD SiO2 and Al2O3.

Metal oxide/LiNbO3 heterostructures were immersed in aqueous AgNO3 solutions and illuminated with ultraviolet (UV) light to form Ag nanoparticle patterns. Alternatively, Al2O3 and SiO2/ZnO heterostructures were immersed in K3PO4 buffer solutions and studied for photoelectrochemical reactions. A fundamental aspect of the heterostructures is the band alignment and band bending, which was deduced from in situ photoemission measurements.

This research has provided insight to three aspects of the heterostructures. First, the band alignment at the interface of metal oxides/LiNbO3, and Al2O3 or SiO2/ZnO were used to explain the possible charge transfer processes and the direction of carrier flow in the heterostructures. Second, the effect of metal oxide coatings on the LiNbO3 with different internal carrier concentrations was related to the surface photochemical reactions. Third is the surface passivation and degradation mechanism of Al2O3 and SiO2 on ZnO was established. The heterostructures were characterized after stability tests using atomic force microscopy (AFM), scanning electron microscopy (SEM), and cross-section transmission electron microscopy (TEM).

The results indicate that limited thicknesses of ZnO or TiO2 on polarity patterned LiNbO3 (PPLN) enhances the Ag+ photoinduced reduction process. ZnO seems more efficient than TiO2 possibly due to a higher carrier mobility. However, an increase of the ZnO thickness (≥ 4 nm) reduced the effect of the PPLN substrate on the Ag nanoparticle pattern. For the case of Al2O3 and SiO2/ZnO heterostructures, SiO2 remains intact through 1 h stability tests. Unlike SiO2, Al2O3 shows surface degradation after a short stability test of a few minutes. Thus, SiO2 provides improved passivation over Al2O3. A detailed microscopy analysis indicates the underneath ZnO photocorrodes in the SiO2/ZnO samples, which is possibly due to transport of ions through the SiO2 protective layer.
ContributorsKaur, Manpuneet (Author) / Nemanich, Robert (Thesis advisor) / Dey, Sandwip (Committee member) / Crozier, Peter (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2016
155663-Thumbnail Image.png
Description
Development of efficient and renewable electrocatalytic systems is foundational to creation of effective means to produce solar fuels. Many redox enzymes are functional electrocatalysts when immobilized on an electrode, but long-term stability of isolated proteins limits use in applications. Thus there is interest in developing bio-inspired functional catalysts or electrocatalytic

Development of efficient and renewable electrocatalytic systems is foundational to creation of effective means to produce solar fuels. Many redox enzymes are functional electrocatalysts when immobilized on an electrode, but long-term stability of isolated proteins limits use in applications. Thus there is interest in developing bio-inspired functional catalysts or electrocatalytic systems based on living organisms. This dissertation describes efforts to create both synthetic and biological electrochemical systems for electrocatalytic hydrogen production.

The first part of this dissertation describes the preparation of three different types of proton reduction catalysts. First, four bioinspired diiron complexes of the form (μ-SRS)Fe(CO)3[Fe(CO)(N-N)] for SRS = 1,2-benzenedithiolate (bdt) and 1,3-propanedithiolate (pdt) and N-N = 2,2’-bipyridine (bpy) and 2,2’-bypyrimidine (bpym), are described. Electrocatatlytic experiments show that although the byprimidinal complexes are not catalysts, the bipyridyl complexes produce hydrogen from acetic acid under reducing conditions. Second, three new mononuclear FeII carbonyl complexes of the form [Fe(CO)(bdt)(PPh2)2] in which P2 = bis-phosphine: 4,5-Bis(diphenylphosphino)- 9,9-dimethylxanthene (Xantphos), 1,2-Bis(diphenylphosphino)benzene (dppb), or cis- 1,2-Bis(diphenylphosphino)ethylene (dppv) are described. All are functional bio-inspired models of the distal Fe site of [FeFe]-hydrogenases. Of these, the Xanthphos complex is the most stable to redox reactions and active as an electrocatalyst. Third, a molybdenum catalyst based on the redox non-innocent PDI ligand framework is also shown to produce hydrogen in the presence of acid.

The second part of this dissertation describes creating functional interfaces between chemical and biological models at electrode surfaces to create electroactive systems. First, covalent tethering of the redox probe ferrocene to thiol-functionalized reduced graphene oxide is demonstrated. I demonstrate that this attachment is via the thiol functional groups. Second, I demonstrate the ability to use electricity in combination with light to drive production of hydrogen by the anaerobic, phototrophic microorganism Heliobacterium modesticaldum.
ContributorsLaureanti, Joseph Anthony (Author) / Jones, Anne K. (Thesis advisor) / Moore, Thomas (Committee member) / Redding, Kevin E. (Committee member) / Arizona State University (Publisher)
Created2017