Matching Items (13)
Filtering by

Clear all filters

155975-Thumbnail Image.png
Description
Cyber-Physical Systems (CPS) are being used in many safety-critical applications. Due to the important role in virtually every aspect of human life, it is crucial to make sure that a CPS works properly before its deployment. However, formal verification of CPS is a computationally hard problem. Therefore, lightweight verification methods

Cyber-Physical Systems (CPS) are being used in many safety-critical applications. Due to the important role in virtually every aspect of human life, it is crucial to make sure that a CPS works properly before its deployment. However, formal verification of CPS is a computationally hard problem. Therefore, lightweight verification methods such as testing and monitoring of the CPS are considered in the industry. The formal representation of the CPS requirements is a challenging task. In addition, checking the system outputs with respect to requirements is a computationally complex problem. In this dissertation, these problems for the verification of CPS are addressed. The first method provides a formal requirement analysis framework which can find logical issues in the requirements and help engineers to correct the requirements. Also, a method is provided to detect tests which vacuously satisfy the requirement because of the requirement structure. This method is used to improve the test generation framework for CPS. Finally, two runtime verification algorithms are developed for off-line/on-line monitoring with respect to real-time requirements. These monitoring algorithms are computationally efficient, and they can be used in practical applications for monitoring CPS with low runtime overhead.
ContributorsDokhanchi, Adel (Author) / Fainekos, Georgios (Thesis advisor) / Lee, Yann-Hang (Committee member) / Sarjoughian, Hessam S. (Committee member) / Shrivastava, Aviral (Committee member) / Arizona State University (Publisher)
Created2017
154868-Thumbnail Image.png
Description
Robots are becoming an important part of our life and industry. Although a lot of robot control interfaces have been developed to simplify the control method and improve user experience, users still cannot control robots comfortably. With the improvements of the robot functions, the requirements of universality and ease of

Robots are becoming an important part of our life and industry. Although a lot of robot control interfaces have been developed to simplify the control method and improve user experience, users still cannot control robots comfortably. With the improvements of the robot functions, the requirements of universality and ease of use of robot control interfaces are also increasing. This research introduces a graphical interface for Linear Temporal Logic (LTL) specifications for mobile robots. It is a sketch based interface built on the Android platform which makes the LTL control interface more friendly to non-expert users. By predefining a set of areas of interest, this interface can quickly and efficiently create plans that satisfy extended plan goals in LTL. The interface can also allow users to customize the paths for this plan by sketching a set of reference trajectories. Given the custom paths by the user, the LTL specification and the environment, the interface generates a plan balancing the customized paths and the LTL specifications. We also show experimental results with the implemented interface.
ContributorsWei, Wei (Author) / Fainekos, Georgios (Thesis advisor) / Amor, Hani Ben (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2016
155738-Thumbnail Image.png
Description
Testing and Verification of Cyber-Physical Systems (CPS) is a challenging problem. The challenge arises as a result of the complex interactions between the components of these systems: the digital control, and the physical environment. Furthermore, the software complexity that governs the high-level control logic in these systems is increasing day

Testing and Verification of Cyber-Physical Systems (CPS) is a challenging problem. The challenge arises as a result of the complex interactions between the components of these systems: the digital control, and the physical environment. Furthermore, the software complexity that governs the high-level control logic in these systems is increasing day by day. As a result, in recent years, both the academic community and the industry have been heavily invested in developing tools and methodologies for the development of safety-critical systems. One scalable approach in testing and verification of these systems is through guided system simulation using stochastic optimization techniques. The goal of the stochastic optimizer is to find system behavior that does not meet the intended specifications.

In this dissertation, three methods that facilitate the testing and verification process for CPS are presented:

1. A graphical formalism and tool which enables the elicitation of formal requirements. To evaluate the performance of the tool, a usability study is conducted.

2. A parameter mining method to infer, analyze, and visually represent falsifying ranges for parametrized system specifications.

3. A notion of conformance between a CPS model and implementation along with a testing framework.

The methods are evaluated over high-fidelity case studies from the industry.
ContributorsHoxha, Bardh (Author) / Fainekos, Georgios (Thesis advisor) / Sarjoughian, Hessam S. (Committee member) / Maciejewski, Ross (Committee member) / Ben Amor, Heni (Committee member) / Arizona State University (Publisher)
Created2017
149454-Thumbnail Image.png
Description
Goal specification is an important aspect of designing autonomous agents. A goal does not only refer to the set of states for the agent to reach. A goal also defines restrictions on the paths the agent should follow. Temporal logics are widely used in goal specification. However, they lack the

Goal specification is an important aspect of designing autonomous agents. A goal does not only refer to the set of states for the agent to reach. A goal also defines restrictions on the paths the agent should follow. Temporal logics are widely used in goal specification. However, they lack the ability to represent goals in a non-deterministic domain, goals that change non-monotonically, and goals with preferences. This dissertation defines new goal specification languages by extending temporal logics to address these issues. First considered is the goal specification in non-deterministic domains, in which an agent following a policy leads to a set of paths. A logic is proposed to distinguish paths of the agent from all paths in the domain. In addition, to address the need of comparing policies for finding the best ones, a language capable of quantifying over policies is proposed. As policy structures of agents play an important role in goal specification, languages are also defined by considering different policy structures. Besides, after an agent is given an initial goal, the agent may change its expectations or the domain may change, thus goals that are previously specified may need to be further updated, revised, partially retracted, or even completely changed. Non-monotonic goal specification languages that can make these changes in an elaboration tolerant manner are needed. Two languages that rely on labeling sub-formulas and connecting multiple rules are developed to address non-monotonicity in goal specification. Also, agents may have preferential relations among sub-goals, and the preferential relations may change as agents achieve other sub-goals. By nesting a comparison operator with other temporal operators, a language with dynamic preferences is proposed. Various goals that cannot be expressed in other languages are expressed in the proposed languages. Finally, plans are given for some goals specified in the proposed languages.
ContributorsZhao, Jicheng (Author) / Baral, Chitta (Thesis advisor) / Kambhampati, Subbarao (Committee member) / Lee, Joohyung (Committee member) / Lifschitz, Vladimir (Committee member) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2010
ContributorsHolton, Kristin (Performer) / ASU Library. Music Library (Publisher)
Created2010-11-02
ContributorsHolton, Kristin (Performer) / ASU Library. Music Library (Publisher)
Created2008-04-27
161975-Thumbnail Image.png
Description
Uncertainty is intrinsic in Cyber-Physical Systems since they interact with human and work with both analog and digital worlds. Since even minute deviation from the real values can make catastrophe in a safety-critical application, considering uncertainties in CPS behavior is essential. On the other side, time is a

Uncertainty is intrinsic in Cyber-Physical Systems since they interact with human and work with both analog and digital worlds. Since even minute deviation from the real values can make catastrophe in a safety-critical application, considering uncertainties in CPS behavior is essential. On the other side, time is a foundational aspect of Cyber-Physical Systems (CPS). Correct timing of system events is critical to optimize responsiveness to the environment, in terms of timeliness, accuracy, and precision in the knowledge, measurement, prediction, and control of CPS behavior. In order to design a more resilient and reliable CPS, first and foremost, there should be a way to specify the timing constraints that a constructed Cyber-Physical System must meet with considering existing uncertainties. Only then, we can seek systematic approaches to check if all timing constraints are being met, and develop correct-by-construction methodologies. In this regard, Timestamp Temporal Logic (TTL) is developed to specify the timing constraints on a distributed CPS. By TTL designers can specify the timing requirements that a CPS must satisfy in a succinct and intuitive manner and express the tolerable error as a part of the language. The proposed deduction system on TTL (TTL reasoning system) gives the ability to check the consistency among expresses system specifications and simplify them to be implemented on FPGA for run-time verification. Regarding CPS run-time verification, Timestamp-based Monitoring Approach(TMA) has been designed that can hook up to a CPS and take its timing specifications in TTL and verify if the timing constraints are being met with considering existing uncertainties in the system. TMA does not need to compute whether the constraint is being met at each and every instance of time but it re-evaluates constraint only when there is an event that can affect the outcome. This enables it to perform online timing monitoring of CPS for less computation and resources. Furthermore, the minimum design parameters of the timing CPS that are required to enable testing the timing of CPS are defined in this dissertation
ContributorsMehrabian, Mohammadreza (Author) / Shrivastava, Aviral (Thesis advisor) / Ren, Fengbo (Committee member) / Sarjoughian, Hessam (Committee member) / Derler, Patricia (Committee member) / Arizona State University (Publisher)
Created2021
187304-Thumbnail Image.png
Description
Testing and verification is an essential procedure to assert a system adheres to some notion of safety. To validate such assertions, monitoring has provided an effective solution to verifying the conformance of complex systems against a set of properties describing what constitutes safe behavior. In authoring such properties, Temporal Logic

Testing and verification is an essential procedure to assert a system adheres to some notion of safety. To validate such assertions, monitoring has provided an effective solution to verifying the conformance of complex systems against a set of properties describing what constitutes safe behavior. In authoring such properties, Temporal Logic (TL) has become a widely adopted specification language in many monitoring applications because of its ability to formally capture time-critical behaviors of reactive systems. This broad acceptance into the verification community and others, however, has naturally led to a lack of TL-based requirement elicitation standards as well as increased friction in tool interoperability. In this thesis, I propose a standardization of TL-based requirement languages through the development of a Formal Requirements Toolkit (FoRek): a modular, extensible, and maintainable collection of TL parsers, translators, and interfaces. To this end, six propositional TL languages are supported in addition to their appropriate past-time variants to provide a framework for a variety of applications using TL as a specification language. Furthermore, improvements to the Pythonic Formal Requirements Language (PyFoReL) tool are performed in addition to a formal definition on the structure of a PyFoReL program. And lastly, to demonstrate the results of this work, FoRek is integrated into an offline monitor to showcase its intended use and potential applications into other domains.
ContributorsAnderson, Jacob W (Author) / Fainekos, Georgios GF (Thesis advisor) / Pedrielli, Giulia GP (Thesis advisor) / Xu, Zhe ZX (Committee member) / Arizona State University (Publisher)
Created2023
ContributorsMarshall, Kimberly (Performer) / Olsen, Katy (Performer) / Lewis, Erin (Performer) / Snavley, Ashley (Performer) / Hutten, Christina (Performer) / Sung, Anna (Performer) / Bogart, Matthew (Performer) / Hawkins, Patrick (Performer) / Holton, Kristin (Performer) / Hart, Skye (Performer) / Howard, Devon (Performer) / ASU Library. Music Library (Publisher)
Created2007-12-09
ContributorsMarshall, Kimberly (Performer) / Olsen, Katy (Performer) / Lewis, Erin (Performer) / Snavley, Ashley (Performer) / Hutten, Christina (Performer) / Sung, Anna (Performer) / Bogart, Matthew (Performer) / Hawkins, Patrick (Performer) / Holton, Kristin (Performer) / Hart, Skye (Performer) / Howard, Devon (Performer) / ASU Library. Music Library (Publisher)
Created2007-12-08