Matching Items (405)
Filtering by

Clear all filters

153345-Thumbnail Image.png
Description
Traditional deterministic reserve requirements rely on ad-hoc, rule of thumb methods to determine adequate reserve in order to ensure a reliable unit commitment. Since congestion and uncertainties exist in the system, both the quantity and the location of reserves are essential to ensure system reliability and market efficiency. The modeling

Traditional deterministic reserve requirements rely on ad-hoc, rule of thumb methods to determine adequate reserve in order to ensure a reliable unit commitment. Since congestion and uncertainties exist in the system, both the quantity and the location of reserves are essential to ensure system reliability and market efficiency. The modeling of operating reserves in the existing deterministic reserve requirements acquire the operating reserves on a zonal basis and do not fully capture the impact of congestion. The purpose of a reserve zone is to ensure that operating reserves are spread across the network. Operating reserves are shared inside each reserve zone, but intra-zonal congestion may block the deliverability of operating reserves within a zone. Thus, improving reserve policies such as reserve zones may improve the location and deliverability of reserve.

As more non-dispatchable renewable resources are integrated into the grid, it will become increasingly difficult to predict the transfer capabilities and the network congestion. At the same time, renewable resources require operators to acquire more operating reserves. With existing deterministic reserve requirements unable to ensure optimal reserve locations, the importance of reserve location and reserve deliverability will increase. While stochastic programming can be used to determine reserve by explicitly modelling uncertainties, there are still scalability as well as pricing issues. Therefore, new methods to improve existing deterministic reserve requirements are desired.

One key barrier of improving existing deterministic reserve requirements is its potential market impacts. A metric, quality of service, is proposed in this thesis to evaluate the price signal and market impacts of proposed hourly reserve zones.

Three main goals of this thesis are: 1) to develop a theoretical and mathematical model to better locate reserve while maintaining the deterministic unit commitment and economic dispatch structure, especially with the consideration of renewables, 2) to develop a market settlement scheme of proposed dynamic reserve policies such that the market efficiency is improved, 3) to evaluate the market impacts and price signal of the proposed dynamic reserve policies.
ContributorsWang, Fengyu (Author) / Hedman, Kory W. (Thesis advisor) / Zhang, Muhong (Committee member) / Tylavsky, Daniel J. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2015
154536-Thumbnail Image.png
Description
Revenue management is at the core of airline operations today; proprietary algorithms and heuristics are used to determine prices and availability of tickets on an almost-continuous basis. While initial developments in revenue management were motivated by industry practice, later developments overcoming fundamental omissions from earlier models show significant improvement, despite

Revenue management is at the core of airline operations today; proprietary algorithms and heuristics are used to determine prices and availability of tickets on an almost-continuous basis. While initial developments in revenue management were motivated by industry practice, later developments overcoming fundamental omissions from earlier models show significant improvement, despite their focus on relatively esoteric aspects of the problem, and have limited potential for practical use due to computational requirements. This dissertation attempts to address various modeling and computational issues, introducing realistic choice-based demand revenue management models. In particular, this work introduces two optimization formulations alongside a choice-based demand modeling framework, improving on the methods that choice-based revenue management literature has created to date, by providing sensible models for airline implementation.

The first model offers an alternative formulation to the traditional choice-based revenue management problem presented in the literature, and provides substantial gains in expected revenue while limiting the problem’s computational complexity. Making assumptions on passenger demand, the Choice-based Mixed Integer Program (CMIP) provides a significantly more compact formulation when compared to other choice-based revenue management models, and consistently outperforms previous models.

Despite the prevalence of choice-based revenue management models in literature, the assumptions made on purchasing behavior inhibit researchers to create models that properly reflect passenger sensitivities to various ticket attributes, such as price, number of stops, and flexibility options. This dissertation introduces a general framework for airline choice-based demand modeling that takes into account various ticket attributes in addition to price, providing a framework for revenue management models to relate airline companies’ product design strategies to the practice of revenue management through decisions on ticket availability and price.

Finally, this dissertation introduces a mixed integer non-linear programming formulation for airline revenue management that accommodates the possibility of simultaneously setting prices and availabilities on a network. Traditional revenue management models primarily focus on availability, only, forcing secondary models to optimize prices. The Price-dynamic Choice-based Mixed Integer Program (PCMIP) eliminates this two-step process, aligning passenger purchase behavior with revenue management policies, and is shown to outperform previously developed models, providing a new frontier of research in airline revenue management.
ContributorsClough, Michael C (Author) / Gel, Esma (Thesis advisor) / Jacobs, Timothy (Thesis advisor) / Askin, Ronald (Committee member) / Montgomery, Douglas C. (Committee member) / Arizona State University (Publisher)
Created2016
ContributorsEvans, Bartlett R. (Conductor) / Schildkret, David (Conductor) / Glenn, Erica (Conductor) / Concert Choir (Performer) / Chamber Singers (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-16
ContributorsOwen, Ken (Conductor) / McDevitt, Mandy L. M. (Performer) / Larson, Brook (Conductor) / Wang, Lin-Yu (Performer) / Jacobs, Todd (Performer) / Morehouse, Daniel (Performer) / Magers, Kristen (Performer) / DeGrow, Gary (Performer) / DeGrow, Richard (Performer) / Women's Chorus (Performer) / Sun Devil Singers (Performer) / ASU Library. Music Library (Publisher)
Created2004-03-24
ContributorsMetz, John (Performer) / Sowers, Richard (Performer) / Collegium Musicum (Performer) / ASU Library. Music Library (Publisher)
Created1983-01-29
ContributorsEvans, Bartlett R. (Conductor) / Glenn, Erica (Conductor) / Steiner, Kieran (Conductor) / Thompson, Jason D. (Conductor) / Arizona Statesmen (Performer) / Women's Chorus (Performer) / Concert Choir (Performer) / Gospel Choir (Conductor) / ASU Library. Music Library (Publisher)
Created2019-03-15
ContributorsKillian, George W. (Performer) / Killian, Joni (Performer) / Vocal Jazz Ensemble (Performer) / ASU Library. Music Library (Publisher)
Created1992-11-05
ContributorsButler, Robb (Conductor) / McCreary, Kimilee (Conductor) / Bakko, Nicki L. (Conductor) / Schreuder, Joel (Conductor) / Larson, Matthew (Performer) / Ortman, Mory (Performer) / Graduate Chorale I (Performer) / Graduate Chorale II (Performer) / ASU Library. Music Library (Publisher)
Created1999-12-02
ContributorsGarrett, Jennifer (Conductor) / FitzPatrick, Carole (Performer) / Aspnes, Lynne (Performer) / Campbell, Andrew (Pianist) (Performer) / Ryan, Russell (Performer) / Rockmaker, Jody (Performer) / Kocour, Mike (Performer) / McLin, Katherine (Performer) / Larson, Brook Carter (Conductor) / Women's Chorus (Performer) / Men's Chorus (Performer) / ASU Library. Music Library (Publisher)
Created2009-05-04
ContributorsLarson, Brook Carter (Conductor) / Gentry, Gregory R. (Conductor) / Garrison, Ryan D. (Conductor) / Schildkret, David (Conductor) / Men's Chorus (Performer) / Symphonic Chorale (Performer) / Women's Chorus (Performer) / Chamber Singers (Performer) / Choral Union (Performer) / ASU Library. Music Library (Publisher)
Created2007-12-03