Matching Items (780)
Filtering by

Clear all filters

151833-Thumbnail Image.png
Description
The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding

The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding in 1871 of the Société Nationale de Musique by Camille Saint-Saëns (1835-1921) and Romain Bussine (1830-1899) made possible the promotion of contemporary French composers. The founding of the Société des Instruments à Vent by Paul Taffanel (1844-1908) in 1879 also invigorated a new era of chamber music for wind instruments. Within this groundbreaking environment, Mélanie Hélène Bonis (pen name Mel Bonis) entered the Paris Conservatory in 1876, under the tutelage of César Franck (1822-1890). Many flutists are dismayed by the scarcity of repertoire for the instrument in the Romantic and post-Romantic traditions; they make up for this absence by borrowing the violin sonatas of Gabriel Fauré (1845-1924) and Franck. The flute and piano works of Mel Bonis help to fill this void with music composed originally for flute. Bonis was a prolific composer with over 300 works to her credit, but her works for flute and piano have not been researched or professionally recorded in the United States before the present study. Although virtually unknown today in the American flute community, Bonis's music received much acclaim from her contemporaries and deserves a prominent place in the flutist's repertoire. After a brief biographical introduction, this document examines Mel Bonis's musical style and describes in detail her six works for flute and piano while also offering performance suggestions.
ContributorsDaum, Jenna Elyse (Author) / Buck, Elizabeth (Thesis advisor) / Holbrook, Amy (Committee member) / Micklich, Albie (Committee member) / Schuring, Martin (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2013
ContributorsMatthews, Eyona (Performer) / Yoo, Katie Jihye (Performer) / Roubison, Ryan (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-25
ContributorsHoeckley, Stephanie (Performer) / Lee, Juhyun (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-24
Description
The goal of this study is to gain a better understanding of earthquake distribution and regional tectonic structure across Arizona. To achieve this objective, I utilized seismic data from EarthScope's USArray Transportable Array (TA), which was deployed in Arizona from April 2006 to March 2009. With station spacing of approximately

The goal of this study is to gain a better understanding of earthquake distribution and regional tectonic structure across Arizona. To achieve this objective, I utilized seismic data from EarthScope's USArray Transportable Array (TA), which was deployed in Arizona from April 2006 to March 2009. With station spacing of approximately 70 km and ~3 years of continuous three-component broadband seismic data, the TA provided an unprecedented opportunity to develop the first seismicity catalog for Arizona without spatial sampling bias. In this study I developed a new data analysis workflow to detect smaller scale seismicity across a regional study area, which serves as a template for future regional analyses of TA data and similar datasets. The final event catalog produced for this study increased the total number of earthquakes documented in Arizona by more than 50% compared to the historical catalog, despite being generated from less than three years of continuous waveform data. I combined this new TA catalog with existing earthquake catalogs to construct a comprehensive historical earthquake catalog for Arizona. These results enabled the identification of several previously unidentified areas of seismic activity within the state, as well as two regions characterized by seismicity in the deeper (>20 km) crust. The catalog also includes 16 event clusters, 10 of which exhibited clear temporal clustering and swarm-like behavior. These swarms were distributed throughout all three physiographic provinces, suggesting that earthquake swarms occur regardless of tectonic or physiographic setting. I also conducted a case study for an earthquake swarm in June of 2007 near Theodore Roosevelt Lake, approximately 80 miles northeast of Phoenix. Families of events showed very similar character, suggesting a nearly identical source location and focal mechanism. We obtained focal mechanisms for the largest of these events, and found that they are consistent with normal faulting, expected in this area of the Arizona Transition Zone. Further, I observed no notable correlation between reservoir water level and seismicity. The occurrence of multiple historical earthquakes in the areas surrounding the reservoir indicates that this swarm was likely the result of tectonic strain release, and not reservoir induced seismicity.
ContributorsLockridge, Jeffrey Steven (Author) / Fouch, Matthew J (Thesis advisor) / Arrowsmith, Ramon (Thesis advisor) / Reynolds, Stephen J. (Committee member) / Arizona State University (Publisher)
Created2011
ContributorsMcClain, Katelyn (Performer) / Buringrud, Deanna (Contributor) / Lee, Juhyun (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-31
Description
Earthquake faulting and the dynamics of subducting lithosphere are among the frontiers of geophysics. Exploring the nature, cause, and implications of geophysical phenomena requires multidisciplinary investigations focused at a range of spatial scales. Within this dissertation, I present studies of micro-scale processes using observational seismology and experimental mineral physics to

Earthquake faulting and the dynamics of subducting lithosphere are among the frontiers of geophysics. Exploring the nature, cause, and implications of geophysical phenomena requires multidisciplinary investigations focused at a range of spatial scales. Within this dissertation, I present studies of micro-scale processes using observational seismology and experimental mineral physics to provide important constraints on models for a range of large-scale geophysical phenomena within the crust and mantle.

The Great Basin (GB) in the western U.S. is part of the diffuse North American-Pacific plate boundary. The interior of the GB occasionally produces large earthquakes, yet the current distribution of regional seismic networks poorly samples it. The EarthScope USArray Transportable Array provides unprecedented station density and data quality for the central GB. I use this dataset to develop an earthquake catalog for the region that is complete to M 1.5. The catalog contains small-magnitude seismicity throughout the interior of the GB. The spatial distribution of earthquakes is consistent with recent regional geodetic studies, confirming that the interior of the GB is actively deforming everywhere and all the time. Additionally, improved event detection thresholds reveal that swarms of temporally-clustered repeating earthquakes occur throughout the GB. The swarms are not associated with active volcanism or other swarm triggering mechanisms, and therefore, may represent a common fault behavior.

Enstatite (Mg,Fe)SiO3 is the second most abundant mineral within subducting lithosphere. Previous studies suggest that metastable enstatite within subducting slabs may persist to the base of the mantle transition zone (MTZ) before transforming to high-pressure polymorphs. The metastable persistence of enstatite has been proposed as a potential cause for both deep-focus earthquakes and the stagnation of slabs at the base of the MTZ. I show that natural Al- and Fe-bearing enstatite reacts more readily than previous studies and by multiple transformation mechanisms at conditions as low as 1200°C and 18 GPa. Metastable enstatite is thus unlikely to survive to the base of the MTZ. Additionally, coherent growth of akimotoite and other high-pressure phases along polysynthetic twin boundaries provides a mechanism for the inheritance of crystallographic preferred orientation from previously deformed enstatite-bearing rocks within subducting slabs.
ContributorsLockridge, Jeffrey Steven (Author) / Sharp, Thomas (Thesis advisor) / Arrowsmith, Ramon (Thesis advisor) / Shim, Sang-Heon (Committee member) / Garnero, Edward (Committee member) / Leinenweber, Kurt (Committee member) / Arizona State University (Publisher)
Created2015
ContributorsHur, Jiyoun (Performer) / Lee, Juhyun (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-01
ContributorsZaleski, Kimberly (Contributor) / Kazarian, Trevor (Performer) / Ryan, Russell (Performer) / IN2ATIVE (Performer) / ASU Library. Music Library (Publisher)
Created2018-09-28
ContributorsDelaney, Erin (Performer) / Novak, Gail (Pianist) (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-18
ContributorsEvans, Bartlett R. (Conductor) / Schildkret, David (Conductor) / Glenn, Erica (Conductor) / Concert Choir (Performer) / Chamber Singers (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-16