Matching Items (6)
Filtering by

Clear all filters

Description
Despite the wealth of folk music traditions in Portugal and the importance of the clarinet in the music of bandas filarmonicas, it is uncommon to find works featuring the clarinet using Portuguese folk music elements. In the interest of expanding this type of repertoire, three new works were commissioned from

Despite the wealth of folk music traditions in Portugal and the importance of the clarinet in the music of bandas filarmonicas, it is uncommon to find works featuring the clarinet using Portuguese folk music elements. In the interest of expanding this type of repertoire, three new works were commissioned from three different composers. The resulting works are Seres Imaginarios 3 by Luis Cardoso; Delirio Barroco by Tiago Derrica; and Memória by Pedro Faria Gomes. In an effort to submit these new works for inclusion into mainstream performance literature, the author has recorded these works on compact disc. This document includes interview transcripts with each composer, providing first-person discussion of each composition, as well as detailed biographical information on each composer. To provide context, the author has included a brief discussion on Portuguese folk music, and in particular, the role that the clarinet plays in Portuguese folk music culture.
ContributorsFerreira, Wesley (Contributor) / Spring, Robert S (Thesis advisor) / Bailey, Wayne (Committee member) / Gardner, Joshua (Committee member) / Hill, Gary (Committee member) / Schuring, Martin (Committee member) / Solis, Theodore (Committee member) / Arizona State University (Publisher)
Created2013
152172-Thumbnail Image.png
Description
The primary function of the medium access control (MAC) protocol is managing access to a shared communication channel. From the viewpoint of transmitters, the MAC protocol determines each transmitter's persistence, the fraction of time it is permitted to spend transmitting. Schedule-based schemes implement stable persistences, achieving low variation in delay

The primary function of the medium access control (MAC) protocol is managing access to a shared communication channel. From the viewpoint of transmitters, the MAC protocol determines each transmitter's persistence, the fraction of time it is permitted to spend transmitting. Schedule-based schemes implement stable persistences, achieving low variation in delay and throughput, and sometimes bounding maximum delay. However, they adapt slowly, if at all, to changes in the network. Contention-based schemes are agile, adapting quickly to changes in perceived contention, but suffer from short-term unfairness, large variations in packet delay, and poor performance at high load. The perfect MAC protocol, it seems, embodies the strengths of both contention- and schedule-based approaches while avoiding their weaknesses. This thesis culminates in the design of a Variable-Weight and Adaptive Topology Transparent (VWATT) MAC protocol. The design of VWATT first required answers for two questions: (1) If a node is equipped with schedules of different weights, which weight should it employ? (2) How is the node to compute the desired weight in a network lacking centralized control? The first question is answered by the Topology- and Load-Aware (TLA) allocation which defines target persistences that conform to both network topology and traffic load. Simulations show the TLA allocation to outperform IEEE 802.11, improving on the expectation and variation of delay, throughput, and drop rate. The second question is answered in the design of an Adaptive Topology- and Load-Aware Scheduled (ATLAS) MAC that computes the TLA allocation in a decentralized and adaptive manner. Simulation results show that ATLAS converges quickly on the TLA allocation, supporting highly dynamic networks. With these questions answered, a construction based on transversal designs is given for a variable-weight topology transparent schedule that allows nodes to dynamically and independently select weights to accommodate local topology and traffic load. The schedule maintains a guarantee on maximum delay when the maximum neighbourhood size is not too large. The schedule is integrated with the distributed computation of ATLAS to create VWATT. Simulations indicate that VWATT offers the stable performance characteristics of a scheduled MAC while adapting quickly to changes in topology and traffic load.
ContributorsLutz, Jonathan (Author) / Colbourn, Charles J (Thesis advisor) / Syrotiuk, Violet R. (Thesis advisor) / Konjevod, Goran (Committee member) / Lloyd, Errol L. (Committee member) / Arizona State University (Publisher)
Created2013
151063-Thumbnail Image.png
Description
Interference constitutes a major challenge for communication networks operating over a shared medium where availability is imperative. This dissertation studies the problem of designing and analyzing efficient medium access protocols which are robust against strong adversarial jamming. More specifically, four medium access (MAC) protocols (i.e., JADE, ANTIJAM, COMAC, and SINRMAC)

Interference constitutes a major challenge for communication networks operating over a shared medium where availability is imperative. This dissertation studies the problem of designing and analyzing efficient medium access protocols which are robust against strong adversarial jamming. More specifically, four medium access (MAC) protocols (i.e., JADE, ANTIJAM, COMAC, and SINRMAC) which aim to achieve high throughput despite jamming activities under a variety of network and adversary models are presented. We also propose a self-stabilizing leader election protocol, SELECT, that can effectively elect a leader in the network with the existence of a strong adversary. Our protocols can not only deal with internal interference without the exact knowledge on the number of participants in the network, but they are also robust to unintentional or intentional external interference, e.g., due to co-existing networks or jammers. We model the external interference by a powerful adaptive and/or reactive adversary which can jam a (1 − ε)-portion of the time steps, where 0 < ε ≤ 1 is an arbitrary constant. We allow the adversary to be adaptive and to have complete knowledge of the entire protocol history. Moreover, in case the adversary is also reactive, it uses carrier sensing to make informed decisions to disrupt communications. Among the proposed protocols, JADE, ANTIJAM and COMAC are able to achieve Θ(1)-competitive throughput with the presence of the strong adversary; while SINRMAC is the first attempt to apply SINR model (i.e., Signal to Interference plus Noise Ratio), in robust medium access protocols design; the derived principles are also useful to build applications on top of the MAC layer, and we present SELECT, which is an exemplary study for leader election, which is one of the most fundamental tasks in distributed computing.
ContributorsZhang, Jin (Author) / Richa, Andréa W. (Thesis advisor) / Scheideler, Christian (Committee member) / Sen, Arunabha (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2012
Description
This project includes a recording and performance guide for three newly commissioned pieces for the clarinet. The first piece, shimmer, was written by Grant Jahn and is for B-flat clarinet and electronics. The second piece, Paragon, is for B-flat clarinet and piano and was composed by Dr. Theresa Martin. The

This project includes a recording and performance guide for three newly commissioned pieces for the clarinet. The first piece, shimmer, was written by Grant Jahn and is for B-flat clarinet and electronics. The second piece, Paragon, is for B-flat clarinet and piano and was composed by Dr. Theresa Martin. The third and final piece, Duality in the Eye of a Bovine, was written by Kurt Mehlenbacher and is for B-flat clarinet, bass clarinet, and piano. In addition to the performance guide, this document also includes background information and program notes for the compositions, as well as composer biographical information, a list of other works featuring the clarinet by each composer, and transcripts of composer and performer interviews. This document is accompanied by a recording of the three pieces.
ContributorsPoupard, Caitlin Marie (Author) / Spring, Robert (Thesis advisor) / Gardner, Joshua (Thesis advisor) / Hill, Gary (Committee member) / Oldani, Robert (Committee member) / Schuring, Martin (Committee member) / Arizona State University (Publisher)
Created2016
Description
The primary objective of this research project is to expand the clarinet repertoire with the addition of four new pieces. Each of these new pieces use contemporary clarinet techniques, including electronics, prerecorded sounds, multiphonics, circular breathing, multiple articulation, demi-clarinet, and the clari-flute. The repertoire composed includes Grant Jahn’s Duo for

The primary objective of this research project is to expand the clarinet repertoire with the addition of four new pieces. Each of these new pieces use contemporary clarinet techniques, including electronics, prerecorded sounds, multiphonics, circular breathing, multiple articulation, demi-clarinet, and the clari-flute. The repertoire composed includes Grant Jahn’s Duo for Two Clarinets, Reggie Berg’s Funkalicious for Clarinet and Piano, Rusty Banks’ Star Juice for Clarinet and Fixed Media, and Chris Malloy’s A Celestial Breath for Clarinet and Electronics. In addition to the musical commissions, this project also includes interviews with the composers indicating how they wrote these works and what their influences were, along with any information pertinent to the performer, professional recordings of each piece, as well as performance notes and suggestions.
ContributorsCase-Ruchala, Celeste Ann (Contributor) / Gardner, Joshua (Thesis advisor) / Spring, Robert (Thesis advisor) / Hill, Gary (Committee member) / Rogers, Rodney (Committee member) / Schuring, Martin (Committee member) / Arizona State University (Publisher)
Created2016
154858-Thumbnail Image.png
Description
Historically, wireless communication devices have been developed to process one specific waveform. In contrast, a modern cellular phone supports multiple waveforms corresponding to LTE, WCDMA(3G) and 2G standards. The selection of the network is controlled by software running on a general purpose processor, not by the user. Now, instead of

Historically, wireless communication devices have been developed to process one specific waveform. In contrast, a modern cellular phone supports multiple waveforms corresponding to LTE, WCDMA(3G) and 2G standards. The selection of the network is controlled by software running on a general purpose processor, not by the user. Now, instead of selecting from a set of complete radios as in software controlled radio, what if the software could select the building blocks based on the user needs. This is the new software-defined flexible radio which would enable users to construct wireless systems that fit their needs, rather than forcing to use from a small set of pre-existing protocols.

To develop and implement flexible protocols, a flexible hardware very similar to a Software Defined Radio (SDR) is required. In this thesis, the Intel T2200 board is chosen as the SDR platform. It is a heterogeneous platform with ARM, CEVA DSP and several accelerators. A wide range of protocols is mapped onto this platform and their performance evaluated. These include two OFDM based protocols (WiFi-Lite-A, WiFi-Lite-B), one DFT-spread OFDM based protocol (SCFDM-Lite) and one single carrier based protocol (SC-Lite). The transmitter and receiver blocks of the different protocols are first mapped on ARM in the T2200 board. The timing results show that IFFT, FFT, and Viterbi decoder blocks take most of the transmitter and receiver execution time and so in the next step these are mapped onto CEVA DSP. Mapping onto CEVA DSP resulted in significant execution time savings. The savings for WiFi-Lite-A were 60%, for WiFi-Lite-B were 64%, and for SCFDM-Lite were 71.5%. No savings are reported for SC-Lite since it was not mapped onto CEVA DSP.

Significant reduction in execution time is achieved for WiFi-Lite-A and WiFi-Lite-B protocols by implementing the entire transmitter and receiver chains on CEVA DSP. For instance, for WiFi-Lite-A, the savings were as large as 90%. Such huge savings are because the entire transmitter or receiver chain are implemented on CEVA and the timing overhead due to ARM-CEVA communication is completely eliminated. Finally, over-the-air testing was done for WiFi-Lite-A and WiFi-Lite-B protocols. Data was sent over the air using one Intel T2200 WBS board and received using another Intel T2200 WBS board. The received frames were decoded with no errors, thereby validating the over-the-air-communications.
ContributorsChagari, Vamsi Reddy (Author) / Chakrabarti, Chaitali (Thesis advisor) / Lee, Hyunseok (Committee member) / Ogras, Umit Y. (Committee member) / Arizona State University (Publisher)
Created2016