Matching Items (18)
Filtering by

Clear all filters

152264-Thumbnail Image.png
Description
In order to cope with the decreasing availability of symphony jobs and collegiate faculty positions, many musicians are starting to pursue less traditional career paths. Also, to combat declining audiences, musicians are exploring ways to cultivate new and enthusiastic listeners through relevant and engaging performances. Due to these challenges, many

In order to cope with the decreasing availability of symphony jobs and collegiate faculty positions, many musicians are starting to pursue less traditional career paths. Also, to combat declining audiences, musicians are exploring ways to cultivate new and enthusiastic listeners through relevant and engaging performances. Due to these challenges, many community-based chamber music ensembles have been formed throughout the United States. These groups not only focus on performing classical music, but serve the needs of their communities as well. The problem, however, is that many musicians have not learned the business skills necessary to create these career opportunities. In this document I discuss the steps ensembles must take to develop sustainable careers. I first analyze how groups build a strong foundation through getting to know their communities and creating core values. I then discuss branding and marketing so ensembles can develop a public image and learn how to publicize themselves. This is followed by an investigation of how ensembles make and organize their money. I then examine the ways groups ensure long-lasting relationships with their communities and within the ensemble. I end by presenting three case studies of professional ensembles to show how groups create and maintain successful careers. Ensembles must develop entrepreneurship skills in addition to cultivating their artistry. These business concepts are crucial to the longevity of chamber groups. Through interviews of successful ensemble members and my own personal experiences in the Tetra String Quartet, I provide a guide for musicians to use when creating a community-based ensemble.
ContributorsDalbey, Jenna (Author) / Landschoot, Thomas (Thesis advisor) / McLin, Katherine (Committee member) / Ryan, Russell (Committee member) / Solis, Theodore (Committee member) / Spring, Robert (Committee member) / Arizona State University (Publisher)
Created2013
152727-Thumbnail Image.png
Description
American Primitive is a composition written for wind ensemble with an instrumentation of flute, oboe, clarinet, bass clarinet, alto, tenor, and baritone saxophones, trumpet, horn, trombone, euphonium, tuba, piano, and percussion. The piece is approximately twelve minutes in duration and was written September - December 2013. American Primitive is absolute

American Primitive is a composition written for wind ensemble with an instrumentation of flute, oboe, clarinet, bass clarinet, alto, tenor, and baritone saxophones, trumpet, horn, trombone, euphonium, tuba, piano, and percussion. The piece is approximately twelve minutes in duration and was written September - December 2013. American Primitive is absolute music (i.e. it does not follow a specific narrative) comprising blocks of distinct, contrasting gestures which bookend a central region of delicate textural layering and minimal gestural contrast. Though three gestures (a descending interval followed by a smaller ascending interval, a dynamic swell, and a chordal "chop") were consciously employed throughout, it is the first gesture of the three that creates a sense of unification and overall coherence to the work. Additionally, the work challenges listeners' expectations of traditional wind ensemble music by featuring the trumpet as a quasi-soloist whose material is predominately inspired by transcriptions of jazz solos. This jazz-inspired material is at times mimicked and further developed by the ensemble, also often in a soloistic manner while the trumpet maintains its role throughout. This interplay of dialogue between the "soloists" and the "ensemble" further skews listeners' conceptions of traditional wind ensemble music by featuring almost every instrument in the ensemble. Though the term "American Primitive" is usually associated with the "naïve art" movement, it bears no association to the music presented in this work. Instead, the term refers to the author's own compositional attitudes, education, and aesthetic interests.
ContributorsJandreau, Joshua (Composer) / Rockmaker, Jody D (Thesis advisor) / Rogers, Rodney I (Committee member) / Demars, James R (Committee member) / Arizona State University (Publisher)
Created2014
153120-Thumbnail Image.png
Description
This project is a practical annotated bibliography of original works for oboe trio with the specific instrumentation of two oboes and English horn. Presenting descriptions of 116 readily available oboe trios, this project is intended to promote awareness, accessibility, and performance of compositions within this genre.

The annotated bibliography focuses

This project is a practical annotated bibliography of original works for oboe trio with the specific instrumentation of two oboes and English horn. Presenting descriptions of 116 readily available oboe trios, this project is intended to promote awareness, accessibility, and performance of compositions within this genre.

The annotated bibliography focuses exclusively on original, published works for two oboes and English horn. Unpublished works, arrangements, works that are out of print and not available through interlibrary loan, or works that feature slightly altered instrumentation are not included.

Entries in this annotated bibliography are listed alphabetically by the last name of the composer. Each entry includes the dates of the composer and a brief biography, followed by the title of the work, composition date, commission, and dedication of the piece. Also included are the names of publishers, the length of the entire piece in minutes and seconds, and an incipit of the first one to eight measures for each movement of the work.

In addition to providing a comprehensive and detailed bibliography of oboe trios, this document traces the history of the oboe trio and includes biographical sketches of each composer cited, allowing readers to place the genre of oboe trios and each individual composition into its historical context. Four appendices at the end include a list of trios arranged alphabetically by composer's last name, chronologically by the date of composition, and by country of origin and a list of publications of Ludwig van Beethoven's oboe trios from the 1940s and earlier.
ContributorsSassaman, Melissa Ann (Author) / Schuring, Martin (Thesis advisor) / Buck, Elizabeth (Committee member) / Holbrook, Amy (Committee member) / Hill, Gary (Committee member) / Arizona State University (Publisher)
Created2014
150159-Thumbnail Image.png
Description
The focus of this investigation is on the renewed assessment of nonlinear reduced order models (ROM) for the accurate prediction of the geometrically nonlinear response of a curved beam. In light of difficulties encountered in an earlier modeling effort, the various steps involved in the construction of the reduced order

The focus of this investigation is on the renewed assessment of nonlinear reduced order models (ROM) for the accurate prediction of the geometrically nonlinear response of a curved beam. In light of difficulties encountered in an earlier modeling effort, the various steps involved in the construction of the reduced order model are carefully reassessed. The selection of the basis functions is first addressed by comparison with the results of proper orthogonal decomposition (POD) analysis. The normal basis functions suggested earlier, i.e. the transverse linear modes of the corresponding flat beam, are shown in fact to be very close to the POD eigenvectors of the normal displacements and thus retained in the present effort. A strong connection is similarly established between the POD eigenvectors of the tangential displacements and the dual modes which are accordingly selected to complement the normal basis functions. The identification of the parameters of the reduced order model is revisited next and it is observed that the standard approach for their identification does not capture well the occurrence of snap-throughs. On this basis, a revised approach is proposed which is assessed first on the static, symmetric response of the beam to a uniform load. A very good to excellent matching between full finite element and ROM predicted responses validates the new identification procedure and motivates its application to the dynamic response of the beam which exhibits both symmetric and antisymmetric motions. While not quite as accurate as in the static case, the reduced order model predictions match well their full Nastran counterparts and support the reduced order model development strategy.
ContributorsZhang, Yaowen (Author) / Mignolet, Marc P (Thesis advisor) / Davidson, Joseph (Committee member) / Spottswood, Stephen M (Committee member) / Arizona State University (Publisher)
Created2011
156576-Thumbnail Image.png
Description
The primary objective in time series analysis is forecasting. Raw data often exhibits nonstationary behavior: trends, seasonal cycles, and heteroskedasticity. After data is transformed to a weakly stationary process, autoregressive moving average (ARMA) models may capture the remaining temporal dynamics to improve forecasting. Estimation of ARMA can be performed

The primary objective in time series analysis is forecasting. Raw data often exhibits nonstationary behavior: trends, seasonal cycles, and heteroskedasticity. After data is transformed to a weakly stationary process, autoregressive moving average (ARMA) models may capture the remaining temporal dynamics to improve forecasting. Estimation of ARMA can be performed through regressing current values on previous realizations and proxy innovations. The classic paradigm fails when dynamics are nonlinear; in this case, parametric, regime-switching specifications model changes in level, ARMA dynamics, and volatility, using a finite number of latent states. If the states can be identified using past endogenous or exogenous information, a threshold autoregressive (TAR) or logistic smooth transition autoregressive (LSTAR) model may simplify complex nonlinear associations to conditional weakly stationary processes. For ARMA, TAR, and STAR, order parameters quantify the extent past information is associated with the future. Unfortunately, even if model orders are known a priori, the possibility of over-fitting can lead to sub-optimal forecasting performance. By intentionally overestimating these orders, a linear representation of the full model is exploited and Bayesian regularization can be used to achieve sparsity. Global-local shrinkage priors for AR, MA, and exogenous coefficients are adopted to pull posterior means toward 0 without over-shrinking relevant effects. This dissertation introduces, evaluates, and compares Bayesian techniques that automatically perform model selection and coefficient estimation of ARMA, TAR, and STAR models. Multiple Monte Carlo experiments illustrate the accuracy of these methods in finding the "true" data generating process. Practical applications demonstrate their efficacy in forecasting.
ContributorsGiacomazzo, Mario (Author) / Kamarianakis, Yiannis (Thesis advisor) / Reiser, Mark R. (Committee member) / McCulloch, Robert (Committee member) / Hahn, Richard (Committee member) / Fricks, John (Committee member) / Arizona State University (Publisher)
Created2018
154754-Thumbnail Image.png
Description
The present investigation is part of a long-term effort focused on the development of a methodology for the computationally efficient prediction of the dynamic response of structures with multiple joints. The first part of this thesis reports on the dynamic response of nominally identical beams with a single lap joint

The present investigation is part of a long-term effort focused on the development of a methodology for the computationally efficient prediction of the dynamic response of structures with multiple joints. The first part of this thesis reports on the dynamic response of nominally identical beams with a single lap joint (“Brake-Reuss” beam). The observed impact responses at different levels clearly demonstrate the occurrence of both micro- and macro-slip, which are reflected by increased damping and a lowering of natural frequencies. Significant beam-to-beam variability of impact responses is also observed.

Based on these experimental results, a deterministic 4-parameter Iwan model of the joint was developed. These parameters were randomized following a previous investigation. The randomness in the impact response predicted from this uncertain model was assessed in a Monte Carlo format through a series of time integrations of the response and found to be consistent with the experimental results.

The availability of an uncertain computational model for the Brake-Reuss beam provides a starting point to analyze and model the response of multi-joint structures in the presence of uncertainty/variability. To this end, a 4-beam frame was designed that is composed of three identical Brake-Reuss beams and a fourth, stretched one. The response of that structure to impact was computed and several cases were identified.

The presence of uncertainty implies that an exact prediction of the response of a particular frame cannot be achieved. Rather, the response can only be predicted to lie within a band reflecting the level of uncertainty. In this perspective, the computational model adopted for the frame is only required to provide a good estimate of this uncertainty band. Equivalently, a relaxation of the model complexity, i.e., the introduction of epistemic uncertainty, can be performed as long as it does not affect significantly the uncertainty band of the predictions. Such an approach, which holds significant promise for the efficient computational of the response of structures with many uncertain joints, is assessed here by replacing some joints by linear spring elements. It is found that this simplification of the model is often acceptable at lower excitation/response levels.
ContributorsRobertson, Brett Anthony (Author) / Mignolet, Marc P (Thesis advisor) / Brake, Matt (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2016
154833-Thumbnail Image.png
Description
According to the CDC in 2010, there were 2.8 million emergency room visits costing $7.9 billion dollars for treatment of nonfatal falling injuries in emergency departments across the country. Falls are a recognized risk factor for unintentional injuries among older adults, accounting for a large proportion of fractures, emergency department

According to the CDC in 2010, there were 2.8 million emergency room visits costing $7.9 billion dollars for treatment of nonfatal falling injuries in emergency departments across the country. Falls are a recognized risk factor for unintentional injuries among older adults, accounting for a large proportion of fractures, emergency department visits, and urgent hospitalizations. The objective of this research was to identify and learn more about what factors affect balance using analysis techniques from nonlinear dynamics. Human balance and gait research traditionally uses linear or qualitative tests to assess and describe human motion; however, it is growing more apparent that human motion is neither a simple nor a linear task. In the 1990s Collins, first started applying stochastic processes to analyze human postural control system. Recently, Zakynthinaki et al. modeled human balance using the idea that humans will remain erect when perturbed until some boundary, or physical limit, is passed. This boundary is similar to the notion of basins of attraction in nonlinear dynamics and is referred to as the basin of stability. Human balance data was collected using dual force plates and Vicon marker position data for leans using only ankle movements and leans that were unrestricted. With this dataset, Zakynthinaki’s work was extended by comparing different algorithms used to create the critical curve (basin of stability boundary) that encloses the experimental data points as well as comparing the differences between the two leaning conditions.
ContributorsSmith, Victoria (Author) / Spano, Mark L (Thesis advisor) / Lockhart, Thurmon E (Thesis advisor) / Honeycutt, Claire (Committee member) / Arizona State University (Publisher)
Created2016
154558-Thumbnail Image.png
Description
Feature learning and the discovery of nonlinear variation patterns in high-dimensional data is an important task in many problem domains, such as imaging, streaming data from sensors, and manufacturing. This dissertation presents several methods for learning and visualizing nonlinear variation in high-dimensional data. First, an automated method for discovering nonlinear

Feature learning and the discovery of nonlinear variation patterns in high-dimensional data is an important task in many problem domains, such as imaging, streaming data from sensors, and manufacturing. This dissertation presents several methods for learning and visualizing nonlinear variation in high-dimensional data. First, an automated method for discovering nonlinear variation patterns using deep learning autoencoders is proposed. The approach provides a functional mapping from a low-dimensional representation to the original spatially-dense data that is both interpretable and efficient with respect to preserving information. Experimental results indicate that deep learning autoencoders outperform manifold learning and principal component analysis in reproducing the original data from the learned variation sources.

A key issue in using autoencoders for nonlinear variation pattern discovery is to encourage the learning of solutions where each feature represents a unique variation source, which we define as distinct features. This problem of learning distinct features is also referred to as disentangling factors of variation in the representation learning literature. The remainder of this dissertation highlights and provides solutions for this important problem.

An alternating autoencoder training method is presented and a new measure motivated by orthogonal loadings in linear models is proposed to quantify feature distinctness in the nonlinear models. Simulated point cloud data and handwritten digit images illustrate that standard training methods for autoencoders consistently mix the true variation sources in the learned low-dimensional representation, whereas the alternating method produces solutions with more distinct patterns.

Finally, a new regularization method for learning distinct nonlinear features using autoencoders is proposed. Motivated in-part by the properties of linear solutions, a series of learning constraints are implemented via regularization penalties during stochastic gradient descent training. These include the orthogonality of tangent vectors to the manifold, the correlation between learned features, and the distributions of the learned features. This regularized learning approach yields low-dimensional representations which can be better interpreted and used to identify the true sources of variation impacting a high-dimensional feature space. Experimental results demonstrate the effectiveness of this method for nonlinear variation pattern discovery on both simulated and real data sets.
ContributorsHoward, Phillip (Author) / Runger, George C. (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Mirchandani, Pitu (Committee member) / Apley, Daniel (Committee member) / Arizona State University (Publisher)
Created2016
155100-Thumbnail Image.png
Description
The repertoire for guitar and piano duo is small in comparison with other chamber music instrumentation; therefore, it is important to broaden this repertoire. In addition to creating original compositions, arrangements of existing works contribute to this expansion.

This project focuses on an arrangement of Bachianas Brasileiras No. 1 by

The repertoire for guitar and piano duo is small in comparison with other chamber music instrumentation; therefore, it is important to broaden this repertoire. In addition to creating original compositions, arrangements of existing works contribute to this expansion.

This project focuses on an arrangement of Bachianas Brasileiras No. 1 by Brazilian composer Heitor Villa-Lobos (1887-1959), a work originally conceived for cello ensemble with a minimum of eight cellos. In order to contextualize the proposed arrangement, this study contains a brief historical listing of the repertoire for guitar and piano duo and of the guitar works by Villa-Lobos. Also, it includes a description of the Bachianas Brasileiras series and a discussion of the arranging methodology that shows how the original musical ideas of the composer were adapted using techniques that are idiomatic to the guitar and piano. The full arrangement is included in Appendix A.
ContributorsFigueiredo Bartoloni, Fabio (Author) / Koonce, Frank (Thesis advisor) / Suzuki, Kotoka (Committee member) / Landschoot, Thomas (Committee member) / Arizona State University (Publisher)
Created2016
155251-Thumbnail Image.png
Description
This investigation develops small-size reduced order models (ROMs) that provide an accurate prediction of the response of only part of a structure, referred to as component-centric ROMs. Four strategies to construct such ROMs are presented, the first two of which are based on the Craig-Bampton Method and start with a

This investigation develops small-size reduced order models (ROMs) that provide an accurate prediction of the response of only part of a structure, referred to as component-centric ROMs. Four strategies to construct such ROMs are presented, the first two of which are based on the Craig-Bampton Method and start with a set of modes for the component of interest (the β component). The response in the rest of the structure (the α component) induced by these modes is then determined and optimally represented by applying a Proper Orthogonal Decomposition strategy using Singular Value Decomposition. These first two methods are effectively basis reductions techniques of the CB basis. An approach based on the “Global - Local” Method generates the “global” modes by “averaging” the mass property over α and β comp., respectively (to extract a “coarse” model of α and β) and the “local” modes orthogonal to the “global” modes to add back necessary “information” for β. The last approach adopts as basis for the entire structure its linear modes which are dominant in the β component response. Then, the contributions of other modes in this part of the structure are approximated in terms of those of the dominant modes with close natural frequencies and similar mode shapes in the β component. In this manner, the non-dominant modal contributions are “lumped” onto the dominant ones, to reduce the number of modes for a prescribed accuracy. The four approaches are critically assessed on the structural finite element model of a 9-bay panel with the modal lumping-based method leading to the smallest sized ROMs. Therefore, it is extended to the nonlinear geometric situation and first recast as a rotation of the modal basis to achieve unobservable modes. In the linear case, these modes completely disappear from the formulation owing to orthogonality. In the nonlinear case, however, the generalized coordinates of these modes are still present in the nonlinear terms of the observable modes. A closure-type algorithm is then proposed to eliminate the unobserved generalized coordinates. This approach, its accuracy and computational savings, was demonstrated on a simple beam model and the 9-bay panel model.
ContributorsWang, Yuting (Author) / Mignolet, Marc P (Thesis advisor) / Jiang, Hanqing (Committee member) / Liu, Yongming (Committee member) / Oswald, Jay (Committee member) / Rajan, Subramaniam D. (Committee member) / Spottswood, Stephen M (Committee member) / Arizona State University (Publisher)
Created2017