Matching Items (2)
154754-Thumbnail Image.png
Description
The present investigation is part of a long-term effort focused on the development of a methodology for the computationally efficient prediction of the dynamic response of structures with multiple joints. The first part of this thesis reports on the dynamic response of nominally identical beams with a single lap joint

The present investigation is part of a long-term effort focused on the development of a methodology for the computationally efficient prediction of the dynamic response of structures with multiple joints. The first part of this thesis reports on the dynamic response of nominally identical beams with a single lap joint (“Brake-Reuss” beam). The observed impact responses at different levels clearly demonstrate the occurrence of both micro- and macro-slip, which are reflected by increased damping and a lowering of natural frequencies. Significant beam-to-beam variability of impact responses is also observed.

Based on these experimental results, a deterministic 4-parameter Iwan model of the joint was developed. These parameters were randomized following a previous investigation. The randomness in the impact response predicted from this uncertain model was assessed in a Monte Carlo format through a series of time integrations of the response and found to be consistent with the experimental results.

The availability of an uncertain computational model for the Brake-Reuss beam provides a starting point to analyze and model the response of multi-joint structures in the presence of uncertainty/variability. To this end, a 4-beam frame was designed that is composed of three identical Brake-Reuss beams and a fourth, stretched one. The response of that structure to impact was computed and several cases were identified.

The presence of uncertainty implies that an exact prediction of the response of a particular frame cannot be achieved. Rather, the response can only be predicted to lie within a band reflecting the level of uncertainty. In this perspective, the computational model adopted for the frame is only required to provide a good estimate of this uncertainty band. Equivalently, a relaxation of the model complexity, i.e., the introduction of epistemic uncertainty, can be performed as long as it does not affect significantly the uncertainty band of the predictions. Such an approach, which holds significant promise for the efficient computational of the response of structures with many uncertain joints, is assessed here by replacing some joints by linear spring elements. It is found that this simplification of the model is often acceptable at lower excitation/response levels.
ContributorsRobertson, Brett Anthony (Author) / Mignolet, Marc P (Thesis advisor) / Brake, Matt (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2016
155251-Thumbnail Image.png
Description
This investigation develops small-size reduced order models (ROMs) that provide an accurate prediction of the response of only part of a structure, referred to as component-centric ROMs. Four strategies to construct such ROMs are presented, the first two of which are based on the Craig-Bampton Method and start with a

This investigation develops small-size reduced order models (ROMs) that provide an accurate prediction of the response of only part of a structure, referred to as component-centric ROMs. Four strategies to construct such ROMs are presented, the first two of which are based on the Craig-Bampton Method and start with a set of modes for the component of interest (the β component). The response in the rest of the structure (the α component) induced by these modes is then determined and optimally represented by applying a Proper Orthogonal Decomposition strategy using Singular Value Decomposition. These first two methods are effectively basis reductions techniques of the CB basis. An approach based on the “Global - Local” Method generates the “global” modes by “averaging” the mass property over α and β comp., respectively (to extract a “coarse” model of α and β) and the “local” modes orthogonal to the “global” modes to add back necessary “information” for β. The last approach adopts as basis for the entire structure its linear modes which are dominant in the β component response. Then, the contributions of other modes in this part of the structure are approximated in terms of those of the dominant modes with close natural frequencies and similar mode shapes in the β component. In this manner, the non-dominant modal contributions are “lumped” onto the dominant ones, to reduce the number of modes for a prescribed accuracy. The four approaches are critically assessed on the structural finite element model of a 9-bay panel with the modal lumping-based method leading to the smallest sized ROMs. Therefore, it is extended to the nonlinear geometric situation and first recast as a rotation of the modal basis to achieve unobservable modes. In the linear case, these modes completely disappear from the formulation owing to orthogonality. In the nonlinear case, however, the generalized coordinates of these modes are still present in the nonlinear terms of the observable modes. A closure-type algorithm is then proposed to eliminate the unobserved generalized coordinates. This approach, its accuracy and computational savings, was demonstrated on a simple beam model and the 9-bay panel model.
ContributorsWang, Yuting (Author) / Mignolet, Marc P (Thesis advisor) / Jiang, Hanqing (Committee member) / Liu, Yongming (Committee member) / Oswald, Jay (Committee member) / Rajan, Subramaniam D. (Committee member) / Spottswood, Stephen M (Committee member) / Arizona State University (Publisher)
Created2017