Matching Items (1,393)
Filtering by

Clear all filters

152264-Thumbnail Image.png
Description
In order to cope with the decreasing availability of symphony jobs and collegiate faculty positions, many musicians are starting to pursue less traditional career paths. Also, to combat declining audiences, musicians are exploring ways to cultivate new and enthusiastic listeners through relevant and engaging performances. Due to these challenges, many

In order to cope with the decreasing availability of symphony jobs and collegiate faculty positions, many musicians are starting to pursue less traditional career paths. Also, to combat declining audiences, musicians are exploring ways to cultivate new and enthusiastic listeners through relevant and engaging performances. Due to these challenges, many community-based chamber music ensembles have been formed throughout the United States. These groups not only focus on performing classical music, but serve the needs of their communities as well. The problem, however, is that many musicians have not learned the business skills necessary to create these career opportunities. In this document I discuss the steps ensembles must take to develop sustainable careers. I first analyze how groups build a strong foundation through getting to know their communities and creating core values. I then discuss branding and marketing so ensembles can develop a public image and learn how to publicize themselves. This is followed by an investigation of how ensembles make and organize their money. I then examine the ways groups ensure long-lasting relationships with their communities and within the ensemble. I end by presenting three case studies of professional ensembles to show how groups create and maintain successful careers. Ensembles must develop entrepreneurship skills in addition to cultivating their artistry. These business concepts are crucial to the longevity of chamber groups. Through interviews of successful ensemble members and my own personal experiences in the Tetra String Quartet, I provide a guide for musicians to use when creating a community-based ensemble.
ContributorsDalbey, Jenna (Author) / Landschoot, Thomas (Thesis advisor) / McLin, Katherine (Committee member) / Ryan, Russell (Committee member) / Solis, Theodore (Committee member) / Spring, Robert (Committee member) / Arizona State University (Publisher)
Created2013
152727-Thumbnail Image.png
Description
American Primitive is a composition written for wind ensemble with an instrumentation of flute, oboe, clarinet, bass clarinet, alto, tenor, and baritone saxophones, trumpet, horn, trombone, euphonium, tuba, piano, and percussion. The piece is approximately twelve minutes in duration and was written September - December 2013. American Primitive is absolute

American Primitive is a composition written for wind ensemble with an instrumentation of flute, oboe, clarinet, bass clarinet, alto, tenor, and baritone saxophones, trumpet, horn, trombone, euphonium, tuba, piano, and percussion. The piece is approximately twelve minutes in duration and was written September - December 2013. American Primitive is absolute music (i.e. it does not follow a specific narrative) comprising blocks of distinct, contrasting gestures which bookend a central region of delicate textural layering and minimal gestural contrast. Though three gestures (a descending interval followed by a smaller ascending interval, a dynamic swell, and a chordal "chop") were consciously employed throughout, it is the first gesture of the three that creates a sense of unification and overall coherence to the work. Additionally, the work challenges listeners' expectations of traditional wind ensemble music by featuring the trumpet as a quasi-soloist whose material is predominately inspired by transcriptions of jazz solos. This jazz-inspired material is at times mimicked and further developed by the ensemble, also often in a soloistic manner while the trumpet maintains its role throughout. This interplay of dialogue between the "soloists" and the "ensemble" further skews listeners' conceptions of traditional wind ensemble music by featuring almost every instrument in the ensemble. Though the term "American Primitive" is usually associated with the "naïve art" movement, it bears no association to the music presented in this work. Instead, the term refers to the author's own compositional attitudes, education, and aesthetic interests.
ContributorsJandreau, Joshua (Composer) / Rockmaker, Jody D (Thesis advisor) / Rogers, Rodney I (Committee member) / Demars, James R (Committee member) / Arizona State University (Publisher)
Created2014
153120-Thumbnail Image.png
Description
This project is a practical annotated bibliography of original works for oboe trio with the specific instrumentation of two oboes and English horn. Presenting descriptions of 116 readily available oboe trios, this project is intended to promote awareness, accessibility, and performance of compositions within this genre.

The annotated bibliography focuses

This project is a practical annotated bibliography of original works for oboe trio with the specific instrumentation of two oboes and English horn. Presenting descriptions of 116 readily available oboe trios, this project is intended to promote awareness, accessibility, and performance of compositions within this genre.

The annotated bibliography focuses exclusively on original, published works for two oboes and English horn. Unpublished works, arrangements, works that are out of print and not available through interlibrary loan, or works that feature slightly altered instrumentation are not included.

Entries in this annotated bibliography are listed alphabetically by the last name of the composer. Each entry includes the dates of the composer and a brief biography, followed by the title of the work, composition date, commission, and dedication of the piece. Also included are the names of publishers, the length of the entire piece in minutes and seconds, and an incipit of the first one to eight measures for each movement of the work.

In addition to providing a comprehensive and detailed bibliography of oboe trios, this document traces the history of the oboe trio and includes biographical sketches of each composer cited, allowing readers to place the genre of oboe trios and each individual composition into its historical context. Four appendices at the end include a list of trios arranged alphabetically by composer's last name, chronologically by the date of composition, and by country of origin and a list of publications of Ludwig van Beethoven's oboe trios from the 1940s and earlier.
ContributorsSassaman, Melissa Ann (Author) / Schuring, Martin (Thesis advisor) / Buck, Elizabeth (Committee member) / Holbrook, Amy (Committee member) / Hill, Gary (Committee member) / Arizona State University (Publisher)
Created2014
150749-Thumbnail Image.png
Description
Biological soil crusts (BSCs) are critical components of arid and semiarid environments and provide the primary sources of bioavailable macronutrients and increase micronutrient availability to their surrounding ecosystems. BSCs are composed of a variety of microorganisms that perform a wide range of physiological processes requiring a multitude of bioessential micronutrients,

Biological soil crusts (BSCs) are critical components of arid and semiarid environments and provide the primary sources of bioavailable macronutrients and increase micronutrient availability to their surrounding ecosystems. BSCs are composed of a variety of microorganisms that perform a wide range of physiological processes requiring a multitude of bioessential micronutrients, such as iron, copper, and molybdenum. This work investigated the effects of BSC activity on soil solution concentrations of bioessential elements and examined the microbial production of organic chelators, called siderophores. I found that aluminum, vanadium, copper, zinc, and molybdenum were solubilized in the action of crusts, while nickel, zinc, arsenic, and zirconium were immobilized by crust activity. Potassium and manganese displayed behavior consistent with biological removal and mobilization, whereas phosphorus and iron solubility were dominated by abiotic processes. The addition of bioavailable nitrogen altered the effects of BSCs on soil element mobilization. In addition, I found that the biogeochemical activites of BSCs were limited by molybdenum, a fact that likely contributes to co-limitation by nitrogen. I confirmed the presence of siderophore producing microbes in BSCs. Siderophores are low-molecular weight organic compounds that are released by bacteria to increase element solubility and facilitate element uptake; siderophore production is likely the mechanism by which BSCs affect the patterns I observed in soil solution element concentrations. Siderophore producers were distributed across a range of bacterial groups and ecological niches within crusts, suggesting that siderophore production influences the availability of a variety of elements for use in many physiological processes. Four putative siderophore compounds were identified using electrospray ionization mass spectrometry; further attempts to characterize the compounds confirmed two true siderophores. Taken together, the results of my work provide information about micronutrient cycling within crusts that can be applied to BSC conservation and management. Fertilization with certain elements, particularly molybdenum, may prove to be a useful technique to promote BSC growth and development which would help prevent arid land degradation. Furthermore, understanding the effects of BSCs on soil element mobility could be used to develop useful biomarkers for the study of the existence and distribution of crust-like communities on ancient Earth, and perhaps other places, like Mars.
ContributorsNoonan, Kathryn Alexander (Author) / Hartnett, Hilairy (Thesis advisor) / Anbar, Ariel (Committee member) / Garcia-Pichel, Ferran (Committee member) / Shock, Everett (Committee member) / Sharp, Thomas (Committee member) / Arizona State University (Publisher)
Created2012
ContributorsPagano, Caio, 1940- (Performer) / Mechetti, Fabio (Conductor) / Buck, Elizabeth (Performer) / Schuring, Martin (Performer) / Spring, Robert (Performer) / Rodrigues, Christiano (Performer) / Landschoot, Thomas (Performer) / Rotaru, Catalin (Performer) / Avanti Festival Orchestra (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-02
156694-Thumbnail Image.png
Description
There is a growing body of evidence that the evolving redox structure of the oceans has been an important influence on the evolutionary trajectory of animals. However, current understanding of connections between marine redox conditions and marine extinctions and recoveries is hampered by limited detailed knowledge of the timing, duration,

There is a growing body of evidence that the evolving redox structure of the oceans has been an important influence on the evolutionary trajectory of animals. However, current understanding of connections between marine redox conditions and marine extinctions and recoveries is hampered by limited detailed knowledge of the timing, duration, and extent of marine redox changes.

The recent development of U isotopes (δ238U) in carbonates as a global ocean redox proxy has provided new insight into this problem. Reliable application and interpretation of the δ238U paleoproxy in geological records requires a thorough understanding of the reliability of δ238U recorded by bulk carbonate sediments. In this dissertation, I evaluate the robustness of δ238U paleoproxy by examining δ238U variations in marine carbonates across Permian-Triassic boundary (PTB) sections from different paleogeographic locations. Close agreement of δ238U profiles from coeval carbonate sections thousands of kilometers apart, in different ocean basins, and with different diagenetic histories, strongly suggests that bulk carbonate sediments can reliably preserve primary marine δ238U signals, validating the carbonate U-isotope proxy for global-ocean redox analysis.

To improve understanding of the role of marine redox in shaping the evolutionary trajectory of animals, high-resolution δ238U records were generated across several key evolutionary periods, including the Ediacaran-to-Early Cambrian Explosion of complex life (635-541 Ma) and the delayed Early Triassic Earth system recovery from the PTB extinction (252-246 Ma). Based on U isotope variations in the Ediacaran-to-the Early Cambrian ocean, the initial diversification of the Ediacara biota immediately postdates an episode of pervasive ocean oxygenation across the Shuram event. The subsequent decline and extinction of the Ediacara biota is coincident with an episode of extensive anoxic conditions during the latest Ediacaran Period. These findings suggest that global marine redox changes drove the rise and fall of the Ediacara biota. Based on U isotope variations, the Early Triassic ocean was characterized by multiple episodes of extensive marine anoxia. By comparing the high-resolution δ238U record with the sub-stage ammonoid extinction rate curve, it appears that multiple oscillations in marine anoxia modulated the recovery of marine ecosystems following the latest Permian mass extinction.
ContributorsZhang, Feifei (Author) / Anbar, Ariel (Thesis advisor) / Gordon, Gwyneth (Committee member) / Hartnett, Hilairy (Committee member) / Wadhwa, Meenakshi (Committee member) / Ruff, Steven (Committee member) / Arizona State University (Publisher)
Created2018
156969-Thumbnail Image.png
Description
Utilizing both 16S and 18S rRNA sequencing alongside energetic calculations from geochemical measurements offers a bridged perspective of prokaryotic and eukaryotic community diversities and their relationships to geochemical diversity. Yellowstone National Park hot spring outflows from varied geochemical compositions, ranging in pH from < 2 to > 9 and in

Utilizing both 16S and 18S rRNA sequencing alongside energetic calculations from geochemical measurements offers a bridged perspective of prokaryotic and eukaryotic community diversities and their relationships to geochemical diversity. Yellowstone National Park hot spring outflows from varied geochemical compositions, ranging in pH from < 2 to > 9 and in temperature from < 30°C to > 90°C, were sampled across the photosynthetic fringe, a transition in these outflows from exclusively chemosynthetic microbial communities to those that include photosynthesis. Illumina sequencing was performed to document the diversity of both prokaryotes and eukaryotes above, at, and below the photosynthetic fringe of twelve hot spring systems. Additionally, field measurements of dissolved oxygen, ferrous iron, and total sulfide were combined with laboratory analyses of sulfate, nitrate, total ammonium, dissolved inorganic carbon, dissolved methane, dissolved hydrogen, and dissolved carbon monoxide were used to calculate the available energy from 58 potential metabolisms. Results were ranked to identify those that yield the most energy according to the geochemical conditions of each system. Of the 46 samples taken across twelve systems, all showed the greatest energy yields using oxygen as the main electron acceptor, followed by nitrate. On the other hand, ammonium or ammonia, depending on pH, showed the greatest energy yields as an electron donor, followed by H2S or HS-. While some sequenced taxa reflect potential biotic participants in the sulfur cycle of these hot spring systems, many sample locations that yield the most energy from ammonium/ammonia oxidation have low relative abundances of known ammonium/ammonia oxidizers, indicating potentially untapped sources of chemotrophic energy or perhaps poorly understood metabolic capabilities of cultured chemotrophs.
ContributorsRomero, Joseph Thomas (Author) / Shock, Everett L (Thesis advisor) / Cadillo-Quiroz, Hinsby (Committee member) / Till, Christy B. (Committee member) / Arizona State University (Publisher)
Created2018
ContributorsDe La Cruz, Nathaniel (Performer) / LoGiudice, Rosa (Contributor) / Tallino, Michael (Performer) / McKinch, Riley (Performer) / Li, Yuhui (Performer) / Armenta, Tyler (Contributor) / Gonzalez, David (Performer) / Jones, Tarin (Performer) / Ryall, Blake (Performer) / Senseman, Stephen (Performer)
Created2018-10-10
155048-Thumbnail Image.png
Description
The search for life on Mars is a major NASA priority. A Mars Sample Return

(MSR) mission, Mars 2020, will be NASA's next step towards this goal, carrying an instrument suite that can identify samples containing potential biosignatures. Those samples will be later returned to Earth for detailed analysis. This dissertation

The search for life on Mars is a major NASA priority. A Mars Sample Return

(MSR) mission, Mars 2020, will be NASA's next step towards this goal, carrying an instrument suite that can identify samples containing potential biosignatures. Those samples will be later returned to Earth for detailed analysis. This dissertation is intended to inform strategies for fossil biosignature detection in Mars analog samples targeted for their high biosignature preservation potential (BPP) using in situ rover-based instruments. In chapter 2, I assessed the diagenesis and BPP of one relevant analog habitable Martian environment: a playa evaporite sequence within the Verde Formation, Arizona. Coupling outcrop-scale observations with laboratory analyses, results revealed four diagenetic pathways, each with distinct impacts on BPP. When MSR occurs, the sample mass returned will be restricted, highlighting the importance of developing instruments that can select the most promising samples for MSR. Raman spectroscopy is one favored technique for this purpose. Three Raman instruments will be sent onboard two upcoming Mars rover missions for the first time. In chapters 3-4, I investigated the challenges of Raman to identify samples for MSR. I examined two Raman systems, each optimized in a different way to mitigate a major problem commonly suffered by Raman instruments: background fluorescence. In Chapter 3, I focused on visible laser excitation wavelength (532 nm) gated (or time-resolved Raman, TRR) spectroscopy. Results showed occasional improvement over conventional Raman for mitigating fluorescence in samples. It was hypothesized that results were wavelength-dependent and that greater fluorescence reduction was possible with UV laser excitation. In Chapter 4, I tested this hypothesis with a time-resolved UV (266 nm) gated Raman and UV fluorescence spectroscopy capability. I acquired Raman and fluorescence data sets on samples and showed that the UV system enabled identifications of minerals and biosignatures in samples with high confidence. The results obtained in this dissertation may inform approaches for MSR by: (1) refining models for biosignature preservation in habitable Mars environments; (2) improving sample selection and caching strategies, which may increase the success of Earth-based biogenicity studies; and (3) informing the development of Raman instruments for upcoming rover-based missions.
ContributorsShkolyar, Svetlana (Author) / Farmer, Jack (Thesis advisor) / Semken, Steven (Committee member) / Sharp, Thomas (Committee member) / Shim, Sang-Heon Dan (Committee member) / Youngbull, Aaron Cody (Committee member) / Arizona State University (Publisher)
Created2016