Matching Items (6)
Filtering by

Clear all filters

151349-Thumbnail Image.png
Description
This dissertation addresses the research challenge of developing efficient new methods for discovering useful patterns and knowledge in large volumes of electronically collected spatiotemporal activity data. I propose to analyze three types of such spatiotemporal activity data in a methodological framework that integrates spatial analysis, data mining, machine learning, and

This dissertation addresses the research challenge of developing efficient new methods for discovering useful patterns and knowledge in large volumes of electronically collected spatiotemporal activity data. I propose to analyze three types of such spatiotemporal activity data in a methodological framework that integrates spatial analysis, data mining, machine learning, and geovisualization techniques. Three different types of spatiotemporal activity data were collected through different data collection approaches: (1) crowd sourced geo-tagged digital photos, representing people's travel activity, were retrieved from the website Panoramio.com through information retrieval techniques; (2) the same techniques were used to crawl crowd sourced GPS trajectory data and related metadata of their daily activities from the website OpenStreetMap.org; and finally (3) preschool children's daily activities and interactions tagged with time and geographical location were collected with a novel TabletPC-based behavioral coding system. The proposed methodology is applied to these data to (1) automatically recommend optimal multi-day and multi-stay travel itineraries for travelers based on discovered attractions from geo-tagged photos, (2) automatically detect movement types of unknown moving objects from GPS trajectories, and (3) explore dynamic social and socio-spatial patterns of preschool children's behavior from both geographic and social perspectives.
ContributorsLi, Xun (Author) / Anselin, Luc (Thesis advisor) / Koschinsky, Julia (Committee member) / Maciejewski, Ross (Committee member) / Rey, Sergio (Committee member) / Griffin, William (Committee member) / Arizona State University (Publisher)
Created2012
152293-Thumbnail Image.png
Description
The border policies of the United States and Mexico that have evolved over the previous decades have pushed illegal immigration and drug smuggling to remote and often public lands. Valuable natural resources and tourist sites suffer an inordinate level of environmental impacts as a result of activities, from new roads

The border policies of the United States and Mexico that have evolved over the previous decades have pushed illegal immigration and drug smuggling to remote and often public lands. Valuable natural resources and tourist sites suffer an inordinate level of environmental impacts as a result of activities, from new roads and trash to cut fence lines and abandoned vehicles. Public land managers struggle to characterize impacts and plan for effective landscape level rehabilitation projects that are the most cost effective and environmentally beneficial for a region given resource limitations. A decision support tool is developed to facilitate public land management: Borderlands Environmental Rehabilitation Spatial Decision Support System (BERSDSS). The utility of the system is demonstrated using a case study of the Sonoran Desert National Monument, Arizona.
ContributorsFisher, Sharisse (Author) / Murray, Alan T. (Thesis advisor) / Wentz, Elizabeth (Committee member) / Rey, Sergio (Committee member) / Arizona State University (Publisher)
Created2013
153527-Thumbnail Image.png
Description
The shortest path between two locations is important for spatial analysis, location modeling, and wayfinding tasks. Depending on permissible movement and availability of data, the shortest path is either derived from a pre-defined transportation network or constructed in continuous space. However, continuous space movement adds substantial complexity to identifying the

The shortest path between two locations is important for spatial analysis, location modeling, and wayfinding tasks. Depending on permissible movement and availability of data, the shortest path is either derived from a pre-defined transportation network or constructed in continuous space. However, continuous space movement adds substantial complexity to identifying the shortest path as the influence of obstacles has to be considered to avoid errors and biases in a derived path. This obstacle-avoiding shortest path in continuous space has been referred to as Euclidean shortest path (ESP), and attracted the attention of many researchers. It has been proven that constructing a graph is an effective approach to limit infinite search options associated with continuous space, reducing the problem to a finite set of potential paths. To date, various methods have been developed for ESP derivation. However, their computational efficiency is limited due to fundamental limitations in graph construction. In this research, a novel algorithm is developed for efficient identification of a graph guaranteed to contain the ESP. This new approach is referred to as the convexpath algorithm, and exploits spatial knowledge and GIS functionality to efficiently construct a graph. The convexpath algorithm utilizes the notion of a convex hull to simultaneously identify relevant obstacles and construct the graph. Additionally, a spatial filtering technique based on intermediate shortest path is enhances intelligent identification of relevant obstacles. Empirical applications show that the convexpath algorithm is able to construct a graph and derive the ESP with significantly improved efficiency compared to visibility and local visibility graph approaches. Furthermore, to boost the performance of convexpath in big data environments, a parallelization approach is proposed and applied to exploit computationally intensive spatial operations of convexpath. Multicore CPU parallelization demonstrates noticeable efficiency gain over the sequential convexpath. Finally, spatial representation and approximation issues associated with raster-based approximation of the ESP are assessed. This dissertation provides a comprehensive treatment of the ESP, and details an important approach for deriving an optimal ESP in real time.
ContributorsHong, Insu (Author) / Murray, Alan T. (Thesis advisor) / Kuby, Micheal (Committee member) / Rey, Sergio (Committee member) / Arizona State University (Publisher)
Created2015
156693-Thumbnail Image.png
Description
In the study of regional economic growth and convergence, the distribution dynamics approach which interrogates the evolution of the cross-sectional distribution as a whole and is concerned with both the external and internal dynamics of the distribution has received wide usage. However, many methodological issues remain to be resolved before

In the study of regional economic growth and convergence, the distribution dynamics approach which interrogates the evolution of the cross-sectional distribution as a whole and is concerned with both the external and internal dynamics of the distribution has received wide usage. However, many methodological issues remain to be resolved before valid inferences and conclusions can be drawn from empirical research. Among them, spatial effects including spatial heterogeneity and spatial dependence invalidate the assumption of independent and identical distributions underlying the conventional maximum likelihood techniques while the availability of small samples in regional settings questions the usage of the asymptotic properties. This dissertation is comprised of three papers targeted at addressing these two issues. The first paper investigates whether the conventional regional income mobility estimators are still suitable in the presence of spatial dependence and/or a small sample. It is approached through a series of Monte Carlo experiments which require the proposal of a novel data generating process (DGP) capable of generating spatially dependent time series. The second paper moves to the statistical tests for detecting specific forms of spatial (spatiotemporal) effects in the discrete Markov chain model, investigating their robustness to the alternative spatial effect, sensitivity to discretization granularity, and properties in small sample settings. The third paper proposes discrete kernel estimators with cross-validated bandwidths as an alternative to maximum likelihood estimators in small sample settings. It is demonstrated that the performance of discrete kernel estimators offers improvement when the sample size is small. Taken together, the three papers constitute an endeavor to relax the restrictive assumptions of spatial independence and spatial homogeneity, as well as demonstrating the difference between the small sample and asymptotic properties for conventionally adopted maximum likelihood estimators towards a more valid inferential framework for the distribution dynamics approach to the study of regional economic growth and convergence.
ContributorsKang, Wei (Author) / Rey, Sergio (Thesis advisor) / Fotheringham, A. Stewart (Committee member) / Ye, Xinyue (Committee member) / Arizona State University (Publisher)
Created2018
155841-Thumbnail Image.png
Description
A major challenge in health-related policy and program evaluation research is attributing underlying causal relationships where complicated processes may exist in natural or quasi-experimental settings. Spatial interaction and heterogeneity between units at individual or group levels can violate both components of the Stable-Unit-Treatment-Value-Assumption (SUTVA) that are core to the counterfactual

A major challenge in health-related policy and program evaluation research is attributing underlying causal relationships where complicated processes may exist in natural or quasi-experimental settings. Spatial interaction and heterogeneity between units at individual or group levels can violate both components of the Stable-Unit-Treatment-Value-Assumption (SUTVA) that are core to the counterfactual framework, making treatment effects difficult to assess. New approaches are needed in health studies to develop spatially dynamic causal modeling methods to both derive insights from data that are sensitive to spatial differences and dependencies, and also be able to rely on a more robust, dynamic technical infrastructure needed for decision-making. To address this gap with a focus on causal applications theoretically, methodologically and technologically, I (1) develop a theoretical spatial framework (within single-level panel econometric methodology) that extends existing theories and methods of causal inference, which tend to ignore spatial dynamics; (2) demonstrate how this spatial framework can be applied in empirical research; and (3) implement a new spatial infrastructure framework that integrates and manages the required data for health systems evaluation.

The new spatially explicit counterfactual framework considers how spatial effects impact treatment choice, treatment variation, and treatment effects. To illustrate this new methodological framework, I first replicate a classic quasi-experimental study that evaluates the effect of drinking age policy on mortality in the United States from 1970 to 1984, and further extend it with a spatial perspective. In another example, I evaluate food access dynamics in Chicago from 2007 to 2014 by implementing advanced spatial analytics that better account for the complex patterns of food access, and quasi-experimental research design to distill the impact of the Great Recession on the foodscape. Inference interpretation is sensitive to both research design framing and underlying processes that drive geographically distributed relationships. Finally, I advance a new Spatial Data Science Infrastructure to integrate and manage data in dynamic, open environments for public health systems research and decision- making. I demonstrate an infrastructure prototype in a final case study, developed in collaboration with health department officials and community organizations.
ContributorsKolak, Marynia Aniela (Author) / Anselin, Luc (Thesis advisor) / Rey, Sergio (Committee member) / Koschinsky, Julia (Committee member) / Maciejewski, Ross (Committee member) / Arizona State University (Publisher)
Created2017
137740-Thumbnail Image.png
Description
In order to help enhance admissions and recruiting efforts, this longitudinal study analyzed the geographic distribution of matriculated Barrett freshmen from 2007-2012 and sought to explore hot and cold spot locations of Barrett enrollment numbers using geographic information science (GIS) methods. One strategy involved   weighted mean center and

In order to help enhance admissions and recruiting efforts, this longitudinal study analyzed the geographic distribution of matriculated Barrett freshmen from 2007-2012 and sought to explore hot and cold spot locations of Barrett enrollment numbers using geographic information science (GIS) methods. One strategy involved   weighted mean center and standard distance analyses for each year of data for non-resident (out-of-state) freshmen home zip codes. Another strategy, a Poisson regression model, revealed recruitment "hot and cold spots" across the U.S. to project the expected counts of Barrett freshmen by zip code. This projected count served as a comparison for the actual admissions data, where zip codes with over and under predictions represented cold and hot spots, respectively. The mean center analysis revealed a westward shift from 2007 to 2012 with similar distance dispersions. The Poisson model projected zero-student zip codes with 99.2% accuracy and non-zero zip codes with 73.8% accuracy. Norwalk, CA (90650) and New York, NY (10021) represented the top out-of-state cold spot zip codes, while the model indicated that Chandler, AZ (85249) and Queen Creek, AZ (85242) had the most in-state potential for recruitment. The model indicated that more students have come from Albuquerque, NM (87122) and Aurora, CO (80015) than anticipated, while Phoenix, AZ (85048) and Tempe, AZ (85284) represent in-state locations with higher correlations between the variables included, especially regarding distance decay, and the than expected numbers of freshmen. The regression also indicated the existence of strong likelihood of attracting Barrett students.
ContributorsKostanick, Megan Elizabeth (Author) / Rey, Sergio (Thesis director) / Dorn, Ron (Committee member) / Koschinsky, Julia (Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Politics and Global Studies (Contributor)
Created2013-05