Matching Items (3)
Filtering by

Clear all filters

137740-Thumbnail Image.png
Description
In order to help enhance admissions and recruiting efforts, this longitudinal study analyzed the geographic distribution of matriculated Barrett freshmen from 2007-2012 and sought to explore hot and cold spot locations of Barrett enrollment numbers using geographic information science (GIS) methods. One strategy involved   weighted mean center and

In order to help enhance admissions and recruiting efforts, this longitudinal study analyzed the geographic distribution of matriculated Barrett freshmen from 2007-2012 and sought to explore hot and cold spot locations of Barrett enrollment numbers using geographic information science (GIS) methods. One strategy involved   weighted mean center and standard distance analyses for each year of data for non-resident (out-of-state) freshmen home zip codes. Another strategy, a Poisson regression model, revealed recruitment "hot and cold spots" across the U.S. to project the expected counts of Barrett freshmen by zip code. This projected count served as a comparison for the actual admissions data, where zip codes with over and under predictions represented cold and hot spots, respectively. The mean center analysis revealed a westward shift from 2007 to 2012 with similar distance dispersions. The Poisson model projected zero-student zip codes with 99.2% accuracy and non-zero zip codes with 73.8% accuracy. Norwalk, CA (90650) and New York, NY (10021) represented the top out-of-state cold spot zip codes, while the model indicated that Chandler, AZ (85249) and Queen Creek, AZ (85242) had the most in-state potential for recruitment. The model indicated that more students have come from Albuquerque, NM (87122) and Aurora, CO (80015) than anticipated, while Phoenix, AZ (85048) and Tempe, AZ (85284) represent in-state locations with higher correlations between the variables included, especially regarding distance decay, and the than expected numbers of freshmen. The regression also indicated the existence of strong likelihood of attracting Barrett students.
ContributorsKostanick, Megan Elizabeth (Author) / Rey, Sergio (Thesis director) / Dorn, Ron (Committee member) / Koschinsky, Julia (Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Politics and Global Studies (Contributor)
Created2013-05
148217-Thumbnail Image.png
Description

The COVID-19 Pandemic has provided a challenge for educators to create virtual learning materials that are engaging and impactful during times of high stress and isolation. In this creative project, I explore the variety of virtual tools and web applications from Esri by creating a Story Map on the Verde

The COVID-19 Pandemic has provided a challenge for educators to create virtual learning materials that are engaging and impactful during times of high stress and isolation. In this creative project, I explore the variety of virtual tools and web applications from Esri by creating a Story Map on the Verde River Watershed. This Story Map is intended for an audience of students in late middle school and early high school but can be a resource to teachers for a wider age range. The integration of interactive technology and virtual tools in educational practices is likely to continue past the immediate circumstances of the COVID-19 pandemic. The purpose of this Story Map is to showcase one of the many uses for geospatial web applications beyond the immediate realm of GIS.

ContributorsTueller, Margaret (Author) / Frazier, Amy (Thesis director) / Dorn, Ron (Committee member) / School of Geographical Sciences and Urban Planning (Contributor, Contributor, Contributor) / Division of Teacher Preparation (Contributor) / The Design School (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
189371-Thumbnail Image.png
Description
In the southwestern United States, water is a precious resource that influences landscapes and their respective ecosystems. Ephemeral lakes, known as playas, are drainage points for closed or endorheic basins and serve as important locations for plant productivity, biogeochemical processes, and groundwater recharge. In this study, I explore the hydrologic

In the southwestern United States, water is a precious resource that influences landscapes and their respective ecosystems. Ephemeral lakes, known as playas, are drainage points for closed or endorheic basins and serve as important locations for plant productivity, biogeochemical processes, and groundwater recharge. In this study, I explore the hydrologic dynamics of eighteen (18) instrumented playas in the Jornada Basin of the Chihuahuan Desert with respect to the drivers of playa inundation and how their behaviors vary in space and time. To this end, I combine water level observations in playas with gauge-corrected radar precipitation estimates to determine hydrologic dynamics over the more than 6-year period of June 2016 to October 2022. Results indicate that all playa inundation events are associated with precipitation and that 76% of events occur during the warm season from April to September that is characterized by the North American monsoon. Mean annual runoff ratios in the playa catchments range from 0.01% to 9.28%. I observe precipitation depth and 60-minute intensity thresholds for playa inundation ranging from 16.1 to 71.3 mm and 8.8 to 40.5 mm/hr, respectively. Although playa inundation is typically caused by high rainfall amounts and intensities, other factors such as antecedent wetness conditions and the spatial variability of rainfall within the playa catchment also play a role. The magnitudes, durations, and occurrence of inundation events vary among playas, but their responses to precipitation generally agree with groupings determined based on their geological origin. Logistic and linear regressions across all playas reveal the relative importance of catchment variables, such as area, sand fraction, slope, and the percentage of bare ground. It is shown that larger catchment areas are strongly associated with a lower likelihood of inundation and higher precipitation thresholds for inundation. An analysis of precipitation data from 1916 to 2015 leads to the estimation of historical playa inundation and suggests that an increase has occurred in the frequency of large rainfall events that may be associated with increasing frequency of playa inundation. This study highlights the complex nature of playa inundation in the Jornada Basin, which can change over time in an evolving climate and landscape.
ContributorsKimsal, Charles Robert (Author) / Vivoni, Enrique R (Thesis advisor) / Whipple, Kelin X (Committee member) / Li, Jiwei (Committee member) / Arizona State University (Publisher)
Created2023