Matching Items (15)
Filtering by

Clear all filters

152110-Thumbnail Image.png
Description
In a laboratory setting, the soil volume change behavior is best represented by using various testing standards on undisturbed or remolded samples. Whenever possible, it is most precise to use undisturbed samples to assess the volume change behavior but in the absence of undisturbed specimens, remodeled samples can be used.

In a laboratory setting, the soil volume change behavior is best represented by using various testing standards on undisturbed or remolded samples. Whenever possible, it is most precise to use undisturbed samples to assess the volume change behavior but in the absence of undisturbed specimens, remodeled samples can be used. If that is the case, the soil is compacted to in-situ density and water content (or matric suction), which should best represent the expansive profile in question. It is standard practice to subject the specimen to a wetting process at a particular net normal stress. Even though currently accepted laboratory testing standard procedures provide insight on how the profile conditions changes with time, these procedures do not assess the long term effects on the soil due to climatic changes. In this experimental study, an assessment and quantification of the effect of multiple wetting/drying cycles on the volume change behavior of two different naturally occurring soils was performed. The changes in wetting and drying cycles were extreme when comparing the swings in matric suction. During the drying cycle, the expansive soil was subjected to extreme conditions, which decreased the moisture content less than the shrinkage limit. Nevertheless, both soils were remolded at five different compacted conditions and loaded to five different net normal stresses. Each sample was subjected to six wetting and drying cycles. During the assessment, it was evident from the results that the swell/collapse strain is highly non-linear at low stress levels. The strain-net normal stress relationship cannot be defined by one single function without transforming the data. Therefore, the dataset needs to be fitted to a bi-modal logarithmic function or to a logarithmic transformation of net normal stress in order to use a third order polynomial fit. It was also determined that the moisture content changes with time are best fit by non-linear functions. For the drying cycle, the radial strain was determined to have a constant rate of change with respect to the axial strain. However, for the wetting cycle, there was not enough radial strain data to develop correlations and therefore, an assumption was made based on 55 different test measurements/observations, for the wetting cycles. In general, it was observed that after each subsequent cycle, higher swelling was exhibited for lower net normal stress values; while higher collapse potential was observed for higher net normal stress values, once the net normal stress was less than/greater than a threshold net normal stress value. Furthermore, the swelling pressure underwent a reduction in all cases. Particularly, the Anthem soil exhibited a reduction in swelling pressure by at least 20 percent after the first wetting/drying cycle; while Colorado soil exhibited a reduction of 50 percent. After about the fourth cycle, the swelling pressure seemed to stabilized to an equilibrium value at which a reduction of 46 percent was observed for the Anthem soil and 68 percent reduction for the Colorado soil. The impact of the initial compacted conditions on heave characteristics was studied. Results indicated that materials compacted at higher densities exhibited greater swell potential. When comparing specimens compacted at the same density but at different moisture content (matric suction), it was observed that specimens compacted at higher suction would exhibit higher swelling potential, when subjected to the same net normal stress. The least amount of swelling strain was observed on specimens compacted at the lowest dry density and the lowest matric suction (higher water content). The results from the laboratory testing were used to develop ultimate heave profiles for both soils. This analysis showed that even though the swell pressure for each soil decreased with cycles, the amount of heave would increase or decrease depending upon the initial compaction condition. When the specimen was compacted at 110% of optimum moisture content and 90% of maximum dry density, it resulted in an ultimate heave reduction of 92 percent for Anthem and 685 percent for Colorado soil. On the other hand, when the soils were compacted at 90% optimum moisture content and 100% of the maximum dry density, Anthem specimens heave 78% more and Colorado specimens heave was reduced by 69%. Based on the results obtained, it is evident that the current methods to estimate heave and swelling pressure do not consider the effect of wetting/drying cycles; and seem to fail capturing the free swell potential of the soil. Recommendations for improvement current methods of practice are provided.
ContributorsRosenbalm, Daniel Curtis (Author) / Zapata, Claudia E (Thesis advisor) / Houston, Sandra L. (Committee member) / Kavazanjian, Edward (Committee member) / Witczak, Mathew W (Committee member) / Arizona State University (Publisher)
Created2013
152596-Thumbnail Image.png
Description
This thesis presents a probabilistic evaluation of multiple laterally loaded drilled pier foundation design approaches using extensive data from a geotechnical investigation for a high voltage electric transmission line. A series of Monte Carlo simulations provide insight about the computed level of reliability considering site standard penetration test blow count

This thesis presents a probabilistic evaluation of multiple laterally loaded drilled pier foundation design approaches using extensive data from a geotechnical investigation for a high voltage electric transmission line. A series of Monte Carlo simulations provide insight about the computed level of reliability considering site standard penetration test blow count value variability alone (i.e., assuming all other aspects of the design problem do not contribute error or bias). Evaluated methods include Eurocode 7 Geotechnical Design procedures, the Federal Highway Administration drilled shaft LRFD design method, the Electric Power Research Institute transmission foundation design procedure and a site specific variability based approach previously suggested by the author of this thesis and others. The analysis method is defined by three phases: a) Evaluate the spatial variability of an existing subsurface database. b) Derive theoretical foundation designs from the database in accordance with the various design methods identified. c) Conduct Monti Carlo Simulations to compute the reliability of the theoretical foundation designs. Over several decades, reliability-based foundation design (RBD) methods have been developed and implemented to varying degrees for buildings, bridges, electric systems and other structures. In recent years, an effort has been made by researchers, professional societies and other standard-developing organizations to publish design guidelines, manuals and standards concerning RBD for foundations. Most of these approaches rely on statistical methods for quantifying load and resistance probability distribution functions with defined reliability levels. However, each varies with regard to the influence of site-specific variability on resistance. An examination of the influence of site-specific variability is required to provide direction for incorporating the concept into practical RBD design methods. Recent surveys of transmission line engineers by the Electric Power Research Institute (EPRI) demonstrate RBD methods for the design of transmission line foundations have not been widely adopted. In the absence of a unifying design document with established reliability goals, transmission line foundations have historically performed very well, with relatively few failures. However, such a track record with no set reliability goals suggests, at least in some cases, a financial premium has likely been paid.
ContributorsHeim, Zackary (Author) / Houston, Sandra (Thesis advisor) / Witczak, Matthew (Committee member) / Kavazanjian, Edward (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2014
151840-Thumbnail Image.png
Description
Urbanization and infrastructure development often brings dramatic changes in the surface and groundwater regimes. These changes in moisture content may be particularly problematic when subsurface soils are moisture sensitive such as expansive soils. Residential foundations such as slab-on ground may be built on unsaturated expansive soils and therefore have to

Urbanization and infrastructure development often brings dramatic changes in the surface and groundwater regimes. These changes in moisture content may be particularly problematic when subsurface soils are moisture sensitive such as expansive soils. Residential foundations such as slab-on ground may be built on unsaturated expansive soils and therefore have to resist the deformations associated with change in moisture content (matric suction) in the soil. The problem is more pronounced in arid and semi arid regions with drying periods followed by wet season resulting in large changes in soil suction. Moisture content change causes volume change in expansive soil which causes serious damage to the structures. In order to mitigate these ill effects various mitigation are adopted. The most commonly adopted method in the US is the removal and replacement of upper soils in the profile. The remove and replace method, although heavily used, is not well understood with regard to its impact on the depth of soil wetting or near-surface differential soil movements. In this study the effectiveness of the remove and replace method is studied. A parametric study is done with various removal and replacement materials used and analyzed to obtain the optimal replacement depths and best material. The depth of wetting and heave caused in expansive soil profile under climatic conditions and common irrigation scenarios are studied for arid regions. Soil suction changes and associated soil deformations are analyzed using finite element codes for unsaturated flow and stress/deformation, SVFlux and SVSolid, respectively. The effectiveness and fundamental mechanisms at play in mitigation of expansive soils for remove and replace methods are studied, and include (1) its role in reducing the depth and degree of wetting, and (2) its effect in reducing the overall heave potential, and (3) the effectiveness of this method in pushing the seat of movement deeper within the soil profile to reduce differential soil surface movements. Various non-expansive replacement layers and different surface flux boundary conditions are analyzed, and the concept of optimal depth and soil is introduced. General observations are made concerning the efficacy of remove and replace as a mitigation method.
ContributorsBharadwaj, Anushree (Author) / Houston, Sandra L. (Thesis advisor) / Welfert, Bruno (Thesis advisor) / Zapata, Claudia E (Committee member) / Arizona State University (Publisher)
Created2013
150169-Thumbnail Image.png
Description
A method for evaluating the integrity of geosynthetic elements of a waste containment system subject to seismic loading is developed using a large strain finite difference numerical computer program. The method accounts for the effect of interaction between the geosynthetic elements and the overlying waste on seismic response and allows

A method for evaluating the integrity of geosynthetic elements of a waste containment system subject to seismic loading is developed using a large strain finite difference numerical computer program. The method accounts for the effect of interaction between the geosynthetic elements and the overlying waste on seismic response and allows for explicit calculation of forces and strains in the geosynthetic elements. Based upon comparison of numerical results to experimental data, an elastic-perfectly plastic interface model is demonstrated to adequately reproduce the cyclic behavior of typical geomembrane-geotextile and geomembrane-geomembrane interfaces provided the appropriate interface properties are used. New constitutive models are developed for the in-plane cyclic shear behavior of textured geomembrane/geosynthetic clay liner (GMX/GCL) interfaces and GCLs. The GMX/GCL model is an empirical model and the GCL model is a kinematic hardening, isotropic softening multi yield surface plasticity model. Both new models allows for degradation in the cyclic shear resistance from a peak to a large displacement shear strength. The ability of the finite difference model to predict forces and strains in a geosynthetic element modeled as a beam element with zero moment of inertia sandwiched between two interface elements is demonstrated using hypothetical models of a heap leach pad and two typical landfill configurations. The numerical model is then used to conduct back analyses of the performance of two lined municipal solid waste (MSW) landfills subjected to strong ground motions in the Northridge earthquake. The modulus reduction "backbone curve" employed with the Masing criterion and 2% Rayleigh damping to model the cyclic behavior of MSW was established by back-analysis of the response of the Operating Industries Inc. landfill to five different earthquakes, three small magnitude nearby events and two larger magnitude distant events. The numerical back analysis was able to predict the tears observed in the Chiquita Canyon Landfill liner system after the earthquake if strain concentrations due to seams and scratches in the geomembrane are taken into account. The apparent good performance of the Lopez Canyon landfill geomembrane and the observed tension in the overlying geotextile after the Northridge event was also successfully predicted using the numerical model.
ContributorsArab, Mohamed G (Author) / Kavazanjian, Edward (Thesis advisor) / Zapata, Claudia (Committee member) / Houston, Sandra (Committee member) / Arizona State University (Publisher)
Created2011
150101-Thumbnail Image.png
Description
As a prelude to a study on the post-liquefaction properties and structure of soil, an investigation of ground freezing as an undisturbed sampling technique was conducted to investigate the ability of this sampling technique to preserve soil structure and properties. Freezing the ground is widely regarded as an appropriate technique

As a prelude to a study on the post-liquefaction properties and structure of soil, an investigation of ground freezing as an undisturbed sampling technique was conducted to investigate the ability of this sampling technique to preserve soil structure and properties. Freezing the ground is widely regarded as an appropriate technique to recover undisturbed samples of saturated cohesionless soil for laboratory testing, despite the fact that water increases in volume when frozen. The explanation generally given for the preservation of soil structure using the freezing technique was that, as long as the freezing front advanced uni-directionally, the expanding pore water is expelled ahead of the freezing front as the front advances. However, a literature review on the transition of water to ice shows that the volume of ice expands approximately nine percent after freezing, bringing into question the hypothesized mechanism and the ability of a frozen and then thawed specimen to retain the properties and structure of the soil in situ. Bench-top models were created by pluviation of sand. The soil in the model was then saturated and subsequently frozen. Freezing was accomplished using a pan filled with alcohol and dry ice placed on the surface of the sand layer to induce a unidirectional freezing front in the sample container. Coring was used to recover frozen samples from model containers. Recovered cores were then placed in a triaxial cell, thawed, and subjected to consolidated undrained loading. The stress-strain-strength behavior of the thawed cores was compared to the behavior of specimens created in a split mold by pluviation and then saturated and sheared without freezing and thawing. The laboratory testing provide insight to the impact of freezing and thawing on the properties of cohesionless soil.
ContributorsKatapa, Kanyembo (Author) / Kavazanjian, Edward (Thesis advisor) / Houston, Sandra (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2011
149831-Thumbnail Image.png
Description
The focus of this study is statistical characterization of the significant duration of strong ground motion time histories. The significant duration is defined as the time needed to build up between five and seventy five (SD575) and ninety five percent (SD595) of the energy of a strong motion record.

The focus of this study is statistical characterization of the significant duration of strong ground motion time histories. The significant duration is defined as the time needed to build up between five and seventy five (SD575) and ninety five percent (SD595) of the energy of a strong motion record. Energy is measured as the integral of the square of the acceleration time history and can be used to capture the potential destructiveness of an earthquake. Correlations of the geometric means of the two significant duration measures (SD575 and SD595) with source, path, and near surface site parameters have been investigated using the geometric mean of 2,690 pairs of recorded horizontal strong ground motion data from 129 earthquakes in active plate margins. These time histories correspond to moment magnitudes between 4.8 and 7.9, site to source distances up to 200 km, and near surface shear wave velocity ranging from 120 to 2250 m/s. Empirical relationships have been developed based upon the simple functional forms, and observed correlations. The coefficients of the independent variables in these empirical relationships have been determined through nonlinear regression analysis using a random effects model. It is found that significant duration measures correlate well with magnitude, site to source distance, and near surface shear wave velocity. The influence of the depth to top of rupture, depth to the shear wave velocity of 1000 m/s and the style of faulting were not found to be statistically significant. Comparison of the empirical relationship developed in this study with existing empirical relationships for the significant duration shows good agreement at intermediate magnitudes (M 6.5). However, at larger and smaller magnitude, the differences between the correlations developed in this study and those from previous studies are significant.
ContributorsGhanat, Simon T (Author) / Kavazanjian, Jr., Edward (Thesis advisor) / Houston, Sandra (Committee member) / Arrowsmith, Ramon (Committee member) / Arizona State University (Publisher)
Created2011
156066-Thumbnail Image.png
Description
Design and mitigation of infrastructure on expansive soils requires an understanding of unsaturated soil mechanics and consideration of two stress variables (net normal stress and matric suction). Although numerous breakthroughs have allowed geotechnical engineers to study expansive soil response to varying suction-based stress scenarios (i.e. partial wetting), such studies

Design and mitigation of infrastructure on expansive soils requires an understanding of unsaturated soil mechanics and consideration of two stress variables (net normal stress and matric suction). Although numerous breakthroughs have allowed geotechnical engineers to study expansive soil response to varying suction-based stress scenarios (i.e. partial wetting), such studies are not practical on typical projects due to the difficulties and duration needed for equilibration associated with the necessary laboratory testing. The current practice encompasses saturated “conventional” soil mechanics testing, with the implementation of numerous empirical correlations and approximations to obtain an estimate of true field response. However, it has been observed that full wetting rarely occurs in the field, leading to an over-conservatism within a given design when partial wetting conditions are ignored. Many researchers have sought to improve ways of estimation of soil heave/shrinkage through intense studies of the suction-based response of reconstituted clay soils. However, the natural behavior of an undisturbed clay soil sample tends to differ significantly from a remolded sample of the same material.

In this study, laboratory techniques for the determination of soil suction were evaluated, a methodology for determination of the in-situ matric suction of a soil specimen was explored, and the mechanical response to changes in matric suction of natural clay specimens were measured. Suction-controlled laboratory oedometer devices were used to impose partial wetting conditions, similar to those experienced in a natural setting. The undisturbed natural soils tested in the study were obtained from Denver, CO and San Antonio, TX.

Key differences between the soil water characteristic curves of the undisturbed specimen test compared to the conventional reconstituted specimen test are highlighted. The Perko et al. (2000) and the PTI (2008) methods for estimating the relationship between volume and changes in matric suction (i.e. suction compression index) were evaluated by comparison to the directly measured values. Lastly, the directly measured partial wetting swell strain was compared to the fully saturated, one-dimensional, oedometer test (ASTM D4546) and the Surrogate Path Method (Singhal, 2010) to evaluate the estimation of partial wetting heave.
ContributorsOlaiz, Austin Hunter (Author) / Houston, Sandra (Thesis advisor) / Zapata, Claudia (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2017
154635-Thumbnail Image.png
Description
The dissimilatory reduction of nitrate, or denitrification, offers the potential of a sustainable, cost effective method for the non-disruptive mitigation of earthquake-induced soil liquefaction. Worldwide, trillions of dollars of infrastructure are at risk for liquefaction damage in earthquake prone regions. However, most techniques for remediating liquefiable soils are

The dissimilatory reduction of nitrate, or denitrification, offers the potential of a sustainable, cost effective method for the non-disruptive mitigation of earthquake-induced soil liquefaction. Worldwide, trillions of dollars of infrastructure are at risk for liquefaction damage in earthquake prone regions. However, most techniques for remediating liquefiable soils are either not applicable to sites near existing infrastructure, or are prohibitively expensive. Recently, laboratory studies have shown the potential for biogeotechnical soil improvement techniques such as microbially induced carbonate precipitation (MICP) to mitigate liquefaction potential in a non-disruptive manner. Multiple microbial processes have been identified for MICP, but only two have been extensively studied. Ureolysis, the most commonly studied process for MICP, has been shown to quickly and efficiently induce carbonate precipitation on particle surfaces and at particle contacts to improve the stiffness, strength, and dilatant behavior of liquefiable soils. However, ureolysis also produces copious amounts of ammonium, a potentially toxic byproduct. The second process studied for MICP, denitrification, has been shown to precipitate carbonate, and hence improve soil properties, much more slowly than ureolysis. However, the byproducts of denitrification, nitrogen and carbon dioxide gas, are non-toxic, and present the added benefit of rapidly desaturating the treated soil. Small amounts of desaturation have been shown to increase the cyclic resistance, and hence the liquefaction resistance, of liquefiable soils. So, denitrification offers the potential to mitigate liquefaction as a two-stage process, with desaturation providing short term mitigation, and MICP providing long term liquefaction resistance. This study presents the results of soil testing, stoichiometric modeling, and microbial ecology characterization to better characterize the potential use of denitrification as a two-stage process for liquefaction mitigation.
ContributorsO'Donnell, Sean (Author) / Kavazanjian, Edward (Thesis advisor) / Rittmann, Bruce (Committee member) / Houston, Sandra (Committee member) / Arizona State University (Publisher)
Created2016
155496-Thumbnail Image.png
Description
The geotechnical community typically relies on recommendations made from numerical simulations. Commercial software exhibits (local) numerical instabilities in layered soils across soil interfaces. This research work investigates unsaturated moisture flow in layered soils and identifies a possible source of numerical instabilities across soil interfaces and potential improvement in numerical schemes

The geotechnical community typically relies on recommendations made from numerical simulations. Commercial software exhibits (local) numerical instabilities in layered soils across soil interfaces. This research work investigates unsaturated moisture flow in layered soils and identifies a possible source of numerical instabilities across soil interfaces and potential improvement in numerical schemes for solving the Richards' equation. The numerical issue at soil interfaces is addressed by a (nonlinear) interface problem. A full analysis of the simplest soil hydraulic model, the Gardner model, identifies the conditions of ill-posedness of the interface problem. Numerical experiments on various (more advanced and practical) soil hydraulic models show that the interface problem can also be ill-posed under certain circumstances. Spurious numerical ponding and/or oscillations around soil interfaces are observed consequently. This work also investigates the impact of different averaging schemes for cell-centered conductivities on the propensity of ill-posedness of the interface problem and concludes that smaller averaging conductivities are more likely to trigger numerical instabilities. In addition, an agent-based stochastic soil model, with hydraulic properties defined at the finite difference cell level, results in a large number of interface problems. This research compares sequences of stochastic realizations in heterogeneous unsaturated soils with the numerical solution using homogenized soil parameters. The mean of stochastic realizations is not identical to the solution obtained from homogenized soil parameters.
ContributorsLiu, Ruowen (Author) / Welfert, Bruno D (Thesis advisor) / Houston, Sandra L. (Committee member) / Jackiewicz, Zdzislaw (Committee member) / Ringhofer, Christian (Committee member) / Zapata, Claudia E (Committee member) / Arizona State University (Publisher)
Created2017
155853-Thumbnail Image.png
Description
Recent research efforts have been directed to improve the quality of pavement design procedures by considering the transient nature of soil properties due to environmental and aging effects on pavement performance. The main purpose of this research study was to investigate the existence of subgrade soil moisture changes that may

Recent research efforts have been directed to improve the quality of pavement design procedures by considering the transient nature of soil properties due to environmental and aging effects on pavement performance. The main purpose of this research study was to investigate the existence of subgrade soil moisture changes that may have arisen due to thermal and hydraulic gradients at the Atlantic City NAPTF and to evaluate their effect on the material stiffness and the California Bearing Ratio (CBR) strength parameter of the clay subgrade materials. Laboratory data showed that at the same water content, matric suction decreases with increasing temperature; and at the same suction, hydraulic conductivity increases with increasing temperature. Models developed, together with moisture/temperature data collected from 30 sensors installed in the test facility, yielded a maximum variation of suction in field of 155 psi and changes in hydraulic conductivity from 2.9E-9 m/s at 100% saturation to 8.1E-12 at 93% saturation. The maximum variation in temperature was found to be 20.8oC at the shallower depth and decreased with depth; while a maximum variation in moisture content was found to be 3.7% for Dupont clay and 4.4% for County clay. Models developed that predicts CBR as a function of dry density and moisture content yielded a maximum variation of CBR of 2.4 for Dupont clay and 2.9 for County clay. Additionally, models were developed relating the temperature with the bulk stress and octahedral stress applied on the subgrade for dual gear, dual tandem and triple tandem gear types for different tire loads. It was found that as the temperature increases the stresses increase. A Modified Cary and Zapata model was used for predicting the resilient modulus(Mr) of the subgrade. Using the models developed and the temperature/moisture changes observed in the field, the variation of suction, bulk and octahedral stresses were estimated, along with the resilient modulus for three different gear types. Results indicated that changes in Mr as large as 9 ksi occur in the soils studied due to the combined effect of external loads and environmental condition changes.
ContributorsThirthar Palanivelu, Pugazhvel (Author) / Zapata, Claudia E (Thesis advisor) / Kavazanjian, Edward (Committee member) / Houston, Sandra (Committee member) / Underwood, Shane (Committee member) / Arizona State University (Publisher)
Created2017