Matching Items (22)
Filtering by

Clear all filters

137618-Thumbnail Image.png
Description
Currently conventional Subtitle D landfills are the primary means of disposing of our waste in the United States. While this method of waste disposal aims at protecting the environment, it does so through the use of liners and caps that effectively freeze the breakdown of waste. Because this method can

Currently conventional Subtitle D landfills are the primary means of disposing of our waste in the United States. While this method of waste disposal aims at protecting the environment, it does so through the use of liners and caps that effectively freeze the breakdown of waste. Because this method can keep landfills active, and thus a potential groundwater threat for over a hundred years, I take an in depth look at the ability of bioreactor landfills to quickly stabilize waste. In the thesis I detail the current state of bioreactor landfill technologies, assessing the pros and cons of anaerobic and aerobic bioreactor technologies. Finally, with an industrial perspective, I conclude that moving on to bioreactor landfills as an alternative isn't as simple as it may first appear, and that it is a contextually specific solution that must be further refined before replacing current landfills.
ContributorsWhitten, George Avery (Author) / Kavazanjian, Edward (Thesis director) / Allenby, Braden (Committee member) / Houston, Sandra (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2013-05
Description

Researchers John H. Falk and Lynn D. Dierking developed what they call the Contextual Model of Learning in their 2012 publication, The Museum Experience Revisited. This model emphasizes the significance of the visitor experience in the museum industry and is defined as three interconnected contexts that constitute a museum visitor’s

Researchers John H. Falk and Lynn D. Dierking developed what they call the Contextual Model of Learning in their 2012 publication, The Museum Experience Revisited. This model emphasizes the significance of the visitor experience in the museum industry and is defined as three interconnected contexts that constitute a museum visitor’s experience. These contexts are the personal context, the sociocultural context, and the physical context. Falk and Dierking argue that all three contexts must be properly acknowledged by the museum for a positive visitor experience. They also provide readers with several recommendations on effective design strategies that fit within the principles of the Contextual Model of Learning. In this analysis, these principles are related directly to museums today. The Field Museum in Chicago and The Children’s Museum of Phoenix are noted for having exceptional websites. The Royal Ontario Museum and the Asian Art Museum are mentioned for having engaging marketing strategies. The Black Country Living Museum in the United Kingdom and the Museum of Modern Art in New York are recognized for innovative social media use. The USS Midway Museum in San Diego and the Musical Instrument Museum in Phoenix are acknowledged for their excellent designs, media usage in exhibits, and accessibility options. The British Museum in London is mentioned for its virtual experiences and gift shop. The Metropolitan Museum of Art is also mentioned for its gift shop. The Arizona Science Center and the Children’s Museum of Indianapolis are commended for their programs. Finally, a brief discussion is done on STEAMtank, a museum experience in development at Arizona State University, and how the principles within the Contextual Model of Learning are being integrated in similar fashion to the other museums discussed.

ContributorsThayer, Dylan (Author) / Heller, Cheryl (Thesis director) / Peters, Abigail (Committee member) / Martin, Paul (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
166745-Thumbnail Image.png
Description

An autobiography on my 6 years at ASU as a design student, honors student, interdisciplinary worker, and a team player. Also, the InnovationSpace experience of working in a transdisciplinary team.

ContributorsKozicki, Jeannie (Author) / Hedges, Craig (Thesis director) / Reeves, Scott (Committee member) / Barrett, The Honors College (Contributor) / School of Humanities, Arts, and Cultural Studies (Contributor) / The Design School (Contributor)
Created2022-05
171930-Thumbnail Image.png
Description
Environmentally harmful byproducts from solid waste’s decomposition, including methane (CH4) emissions, are managed through standardized landfill engineering and gas-capture mechanisms. Yet only a limited number of studies have analyzed the development and composition of Bacteria and Archaea involved in CH4 production from landfills. The objectives of this research were to

Environmentally harmful byproducts from solid waste’s decomposition, including methane (CH4) emissions, are managed through standardized landfill engineering and gas-capture mechanisms. Yet only a limited number of studies have analyzed the development and composition of Bacteria and Archaea involved in CH4 production from landfills. The objectives of this research were to compare microbiomes and bioactivity from CH4-producing communities in contrasting spatial areas of arid landfills and to tests a new technology to biostimulate CH4 production (methanogenesis) from solid waste under dynamic environmental conditions controlled in the laboratory. My hypothesis was that the diversity and abundance of methanogenic Archaea in municipal solid waste (MSW), or its leachate, play an important role on CH4 production partially attributed to the group’s wide hydrogen (H2) consumption capabilities. I tested this hypothesis by conducting complementary field observations and laboratory experiments. I describe niches of methanogenic Archaea in MSW leachate across defined areas within a single landfill, while demonstrating functional H2-dependent activity. To alleviate limited H2 bioavailability encountered in-situ, I present biostimulant feasibility and proof-of-concepts studies through the amendment of zero valent metals (ZVMs). My results demonstrate that older-aged MSW was minimally biostimulated for greater CH4 production relative to a control when exposed to iron (Fe0) or manganese (Mn0), due to highly discernable traits of soluble carbon, nitrogen, and unidentified fluorophores found in water extracts between young and old aged, starting MSW. Acetate and inhibitory H2 partial pressures accumulated in microcosms containing old-aged MSW. In a final experiment, repeated amendments of ZVMs to MSW in a 600 day mesocosm experiment mediated significantly higher CH4 concentrations and yields during the first of three ZVM injections. Fe0 and Mn0 experimental treatments at mesocosm-scale also highlighted accelerated development of seemingly important, but elusive Archaea including Methanobacteriaceae, a methane-producing family that is found in diverse environments. Also, prokaryotic classes including Candidatus Bathyarchaeota, an uncultured group commonly found in carbon-rich ecosystems, and Clostridia; All three taxa I identified as highly predictive in the time-dependent progression of MSW decomposition. Altogether, my experiments demonstrate the importance of H2 bioavailability on CH4 production and the consistent development of Methanobacteriaceae in productive MSW microbiomes.
ContributorsReynolds, Mark Christian (Author) / Cadillo-Quiroz, Hinsby (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Wang, Xuan (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2022
157581-Thumbnail Image.png
Description
Zero-Valent Metals (ZVM) are highly reactive materials and have been proved to be effective in contaminant reduction in soils and groundwater remediation. In fact, zero-Valent Iron (ZVI) has proven to be very effective in removing, particularly chlorinated organics, heavy metals, and odorous sulfides. Addition of ZVI has also been proved

Zero-Valent Metals (ZVM) are highly reactive materials and have been proved to be effective in contaminant reduction in soils and groundwater remediation. In fact, zero-Valent Iron (ZVI) has proven to be very effective in removing, particularly chlorinated organics, heavy metals, and odorous sulfides. Addition of ZVI has also been proved in enhancing the methane gas generation in anaerobic digestion of activated sludge. However, no studies have been conducted regarding the effect of ZVM stimulation to Municipal Solid Waste (MSW) degradation. Therefore, a collaborative study was developed to manipulate microbial activity in the landfill bioreactors to favor methane production by adding ZVMs. This study focuses on evaluating the effects of added ZVM on the leachate generated from replicated lab scale landfill bioreactors. The specific objective was to investigate the effects of ZVMs addition on the organic and inorganic pollutants in leachate. The hypothesis here evaluated was that adding ZVM including ZVI and Zero Valent Manganese (ZVMn) will enhance the removal rates of the organic pollutants present in the leachate, likely by a putative higher rate of microbial metabolism. Test with six (4.23 gallons) bioreactors assembled with MSW collected from the Salt River Landfill and Southwest Regional Landfill showed that under 5 grams /liter of ZVI and 0.625 grams/liter of ZVMn additions, no significant difference was observed in the pH and temperature data of the leachate generated from these reactors. The conductivity data suggested the steady rise across all reactors over the period of time. The removal efficiency of sCOD was highest (27.112 mg/lit/day) for the reactors added with ZVMn at the end of 150 days for bottom layer, however the removal rate was highest (16.955 mg/lit/day) for ZVI after the end of 150 days of the middle layer. Similar trends in the results was observed in TC analysis. HPLC study indicated the dominance of the concentration of heptanoate and isovalerate were leachate generated from the bottom layer across all reactors. Heptanoate continued to dominate in the ZVMn added leachate even after middle layer injection. IC analysis concluded the chloride was dominant in the leachate generated from all the reactors and there was a steady increase in the chloride content over the period of time. Along with chloride, fluoride, bromide, nitrate, nitrite, phosphate and sulfate were also detected in considerable concentrations. In the summary, the addition of the zero valent metals has proved to be efficient in removal of the organics present in the leachate.
ContributorsPandit, Gandhar Abhay (Author) / Cadillo – Quiroz, Hinsby (Thesis advisor) / Olson, Larry (Thesis advisor) / Boyer, Treavor (Committee member) / Arizona State University (Publisher)
Created2019
Description

Experience as a chemical engineer student in the Innovation Space, and what key element did I learn from each stage of the exhibit construction for a year.

ContributorsDoukoum, Zara (Author) / Hedges, Craig (Thesis director) / Reeves, James (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2022-05
165950-Thumbnail Image.png
ContributorsDoukoum, Zara (Author) / Hedges, Craig (Thesis director) / Reeves, James (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2022-05
165951-Thumbnail Image.png
ContributorsDoukoum, Zara (Author) / Hedges, Craig (Thesis director) / Reeves, James (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2022-05
Description

The goal of themed entertainment is to use activities and environments to tell a story and immerse the guest in a novel experience. By applying these concepts to nonfiction and educational topics, the concept of edutainment is created. In recent years museums have begun utilizing the concept of edutainment and

The goal of themed entertainment is to use activities and environments to tell a story and immerse the guest in a novel experience. By applying these concepts to nonfiction and educational topics, the concept of edutainment is created. In recent years museums have begun utilizing the concept of edutainment and techniques typically found in themed entertainment experiences to capture the attention and focus of guests and create experiences that connect emotionally with them. My goal in this thesis pathway project was to investigate this trend and technique of connecting with an audience and apply it to the STEAMtank project within ASU’s Innovation Space. The goal of STEAMtank is to design and fabricate children’s STEAM museum exhibits in two semesters with focus on accessible design. My team conducted research and interviews exploring current market trends in theme parks and museums, best practice designs and operations, and interests of children to develop the concept for our exhibit, Gust of Dust, which was then fine-tuned, constructed, and installed in the STEAMtank Exhibit Space. Gust of Dust is an exciting exhibit demonstrating the power of a haboob that was developed from preconcept to installation in under a year by two determined and talented interdisciplinary teams. Learning about haboobs connect concepts of environmentalism, earth science, and safety to real concepts in children’s lives.

ContributorsWade, Morgan (Author) / Hedges, Craig (Thesis director) / Reeves, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
164321-Thumbnail Image.png
ContributorsWade, Morgan (Author) / Hedges, Craig (Thesis director) / Reeves, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05