Matching Items (15)
Filtering by

Clear all filters

149985-Thumbnail Image.png
Description
The high strength to weight ratio of woven fabric offers a cost effective solution to be used in a containment system for aircraft propulsion engines. Currently, Kevlar is the only Federal Aviation Administration (FAA) approved fabric for usage in systems intended to mitigate fan blade-out events. This research builds on

The high strength to weight ratio of woven fabric offers a cost effective solution to be used in a containment system for aircraft propulsion engines. Currently, Kevlar is the only Federal Aviation Administration (FAA) approved fabric for usage in systems intended to mitigate fan blade-out events. This research builds on an earlier constitutive model of Kevlar 49 fabric developed at Arizona State University (ASU) with the addition of new and improved modeling details. Latest stress strain experiments provided new and valuable data used to modify the material model post peak behavior. These changes reveal an overall improvement of the Finite Element (FE) model's ability to predict experimental results. First, the steel projectile is modeled using Johnson-Cook material model and provides a more realistic behavior in the FE ballistic models. This is particularly noticeable when comparing FE models with laboratory tests where large deformations in projectiles are observed. Second, follow-up analysis of the results obtained through the new picture frame tests conducted at ASU provides new values for the shear moduli and corresponding strains. The new approach for analysis of data from picture frame tests combines digital image analysis and a two-level factorial optimization formulation. Finally, an additional improvement in the material model for Kevlar involves checking the convergence at variation of mesh density of fabrics. The study performed and described herein shows the converging trend, therefore validating the FE model.
ContributorsMorea, Mihai I (Author) / Rajan, Subramaniam D. (Thesis advisor) / Arizona State University (Publisher)
Created2011
151345-Thumbnail Image.png
Description
Woven fabric composite materials are widely used in the construction of aircraft engine fan containment systems, mostly due to their high strength to weight ratios and ease of implementation. The development of a predictive model for fan blade containment would provide great benefit to engine manufactures in shortened development cycle

Woven fabric composite materials are widely used in the construction of aircraft engine fan containment systems, mostly due to their high strength to weight ratios and ease of implementation. The development of a predictive model for fan blade containment would provide great benefit to engine manufactures in shortened development cycle time, less risk in certification and fewer dollars lost to redesign/recertification cycles. A mechanistic user-defined material model subroutine has been developed at Arizona State University (ASU) that captures the behavioral response of these fabrics, namely Kevlar® 49, under ballistic loading. Previously developed finite element models used to validate the consistency of this material model neglected the effects of the physical constraints imposed on the test setup during ballistic testing performed at NASA Glenn Research Center (NASA GRC). Part of this research was to explore the effects of these boundary conditions on the results of the numerical simulations. These effects were found to be negligible in most instances. Other material models for woven fabrics are available in the LS-DYNA finite element code. One of these models, MAT234: MAT_VISCOELASTIC_LOOSE_FABRIC (Ivanov & Tabiei, 2004) was studied and implemented in the finite element simulations of ballistic testing associated with the FAA ASU research. The results from these models are compared to results obtained from the ASU UMAT as part of this research. The results indicate an underestimation in the energy absorption characteristics of the Kevlar 49 fabric containment systems. More investigation needs to be performed in the implementation of MAT234 for Kevlar 49 fabric. Static penetrator testing of Kevlar® 49 fabric was performed at ASU in conjunction with this research. These experiments are designed to mimic the type of loading experienced during fan blade out events. The resulting experimental strains were measured using a non-contact optical strain measurement system (ARAMIS).
ContributorsFein, Jonathan (Author) / Rajan, Subramaniam D. (Thesis advisor) / Mobasher, Barzin (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2012
151437-Thumbnail Image.png
Description
Dwindling energy resources and associated environmental costs have resulted in a serious need to design and construct energy efficient buildings. One of the strategies to develop energy efficient structural materials is through the incorporation of phase change materials (PCM) in the host matrix. This research work presents details of a

Dwindling energy resources and associated environmental costs have resulted in a serious need to design and construct energy efficient buildings. One of the strategies to develop energy efficient structural materials is through the incorporation of phase change materials (PCM) in the host matrix. This research work presents details of a finite element-based framework that is used to study the thermal performance of structural precast concrete wall elements with and without a layer of phase change material. The simulation platform developed can be implemented for a wide variety of input parameters. In this study, two different locations in the continental United States, representing different ambient temperature conditions (corresponding to hot, cold and typical days of the year) are studied. Two different types of concrete - normal weight and lightweight, different PCM types, gypsum wallboard's with varying PCM percentages and different PCM layer thicknesses are also considered with an aim of understanding the energy flow across the wall member. Effect of changing PCM location and prolonged thermal loading are also studied. The temperature of the inside face of the wall and energy flow through the inside face of the wall, which determines the indoor HVAC energy consumption are used as the defining parameters. An ad-hoc optimization scheme is also implemented where the PCM thickness is fixed but its location and properties are varied. Numerical results show that energy savings are possible with small changes in baseline values, facilitating appropriate material design for desired characteristics.
ContributorsHembade, Lavannya Babanrao (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Thesis advisor) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2012
151367-Thumbnail Image.png
Description
This study focuses on implementing probabilistic nature of material properties (Kevlar® 49) to the existing deterministic finite element analysis (FEA) of fabric based engine containment system through Monte Carlo simulations (MCS) and implementation of probabilistic analysis in engineering designs through Reliability Based Design Optimization (RBDO). First, the emphasis is on

This study focuses on implementing probabilistic nature of material properties (Kevlar® 49) to the existing deterministic finite element analysis (FEA) of fabric based engine containment system through Monte Carlo simulations (MCS) and implementation of probabilistic analysis in engineering designs through Reliability Based Design Optimization (RBDO). First, the emphasis is on experimental data analysis focusing on probabilistic distribution models which characterize the randomness associated with the experimental data. The material properties of Kevlar® 49 are modeled using experimental data analysis and implemented along with an existing spiral modeling scheme (SMS) and user defined constitutive model (UMAT) for fabric based engine containment simulations in LS-DYNA. MCS of the model are performed to observe the failure pattern and exit velocities of the models. Then the solutions are compared with NASA experimental tests and deterministic results. MCS with probabilistic material data give a good prospective on results rather than a single deterministic simulation results. The next part of research is to implement the probabilistic material properties in engineering designs. The main aim of structural design is to obtain optimal solutions. In any case, in a deterministic optimization problem even though the structures are cost effective, it becomes highly unreliable if the uncertainty that may be associated with the system (material properties, loading etc.) is not represented or considered in the solution process. Reliable and optimal solution can be obtained by performing reliability optimization along with the deterministic optimization, which is RBDO. In RBDO problem formulation, in addition to structural performance constraints, reliability constraints are also considered. This part of research starts with introduction to reliability analysis such as first order reliability analysis, second order reliability analysis followed by simulation technique that are performed to obtain probability of failure and reliability of structures. Next, decoupled RBDO procedure is proposed with a new reliability analysis formulation with sensitivity analysis, which is performed to remove the highly reliable constraints in the RBDO, thereby reducing the computational time and function evaluations. Followed by implementation of the reliability analysis concepts and RBDO in finite element 2D truss problems and a planar beam problem are presented and discussed.
ContributorsDeivanayagam, Arumugam (Author) / Rajan, Subramaniam D. (Thesis advisor) / Mobasher, Barzin (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2012
Description
The wide-scale use of green technologies such as electric vehicles has been slowed due to insufficient means of storing enough portable energy. Therefore it is critical that efficient storage mediums be developed in order to transform abundant renewable energy into an on-demand source of power. Lithium (Li) ion batteries are

The wide-scale use of green technologies such as electric vehicles has been slowed due to insufficient means of storing enough portable energy. Therefore it is critical that efficient storage mediums be developed in order to transform abundant renewable energy into an on-demand source of power. Lithium (Li) ion batteries are seeing a stream of improvements as they are introduced into many consumer electronics, electric vehicles and aircraft, and medical devices. Li-ion batteries are well suited for portable applications because of their high energy-to-weight ratios, high energy densities, and reasonable life cycles. Current research into Li-ion batteries is focused on enhancing its energy density, and by changing the electrode materials, greater energy capacities can be realized. Silicon (Si) is a very attractive option because it has the highest known theoretical charge capacity. Current Si anodes, however, suffer from early capacity fading caused by pulverization from the stresses induced by large volumetric changes that occur during charging and discharging. An innovative system aimed at resolving this issue is being developed. This system incorporates a thin Si film bonded to an elastomeric substrate which is intended to provide the desired stress relief. Non-linear finite element simulations have shown that a significant amount of deformation can be accommodated until a critical threshold of Li concentration is reached; beyond which buckling is induced and a wavy structure appears. When compared to a similar system using rigid substrates where no buckling occurs, the stress is reduced by an order of magnitude, significantly prolonging the life of the Si anode. Thus the stress can be released at high Li-ion diffusion induced strains by buckling the Si thin film. Several aspects of this anode system have been analyzed including studying the effects of charge rate and thin film plasticity, and the results are compared with preliminary empirical measurements to show great promise. This study serves as the basis for a radical resolution to one of the few remaining barriers left in the development of high performing Si based electrodes for Li-ion batteries.
ContributorsShaffer, Joseph (Author) / Jiang, Hanqing (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Peralta, Pedro (Committee member) / Arizona State University (Publisher)
Created2011
149524-Thumbnail Image.png
Description
Ordered buckling of stiff films on elastomeric substrates has many applications in the field of stretchable electronics. Mechanics plays a very important role in such systems. A full three dimensional finite element analysis studying the pattern of wrinkles formed on a stiff film bonded to a compliant substrate under the

Ordered buckling of stiff films on elastomeric substrates has many applications in the field of stretchable electronics. Mechanics plays a very important role in such systems. A full three dimensional finite element analysis studying the pattern of wrinkles formed on a stiff film bonded to a compliant substrate under the action of a compressive force has been widely studied. For thin films, this wrinkling pattern is usually sinusoidal, and for wide films the pattern depends on loading conditions. The present study establishes a relationship between the effect of the load applied at an angle to the stiff film. A systematic experimental and analytical study of these systems has been presented in the present study. The study is performed for two different loading conditions, one with the compressive force applied parallel to the film and the other with an angle included between the application of the force and the alignment of the stiff film. A geometric model closely resembling the experimental specimen studied is created and a three dimensional finite element analysis is carried out using ABAQUS (Version 6.7). The objective of the finite element simulations is to validate the results of the experimental study to be corresponding to the minimum total energy of the system. It also helps to establish a relation between the parameters of the buckling profile and the parameters (elastic and dimensional parameters) of the system. Two methods of non-linear analysis namely, the Newton-Raphson method and Arc-Length method are used. It is found that the Arc-Length method is the most cost effective in terms of total simulation time for large models (higher number of elements).The convergence of the results is affected by a variety of factors like the dimensional parameters of the substrate, mesh density of the model, length of the substrate and the film, the angle included. For narrow silicon films the buckling profile is observed to be sinusoidal and perpendicular to the direction of the silicon film. As the angle increases in wider stiff films the buckling profile is seen to transit from being perpendicular to the direction of the film to being perpendicular to the direction of the application of the pre-stress. This study improves and expands the application of the stiff film buckling to an angled loading condition.
ContributorsKondagari, Swathi Sri (Author) / Jiang, Hanqing (Thesis advisor) / Yu, Hongyu (Committee member) / Rajan, Subramaniam D. (Committee member) / Arizona State University (Publisher)
Created2010
157550-Thumbnail Image.png
Description
An orthotropic elasto-plastic damage material model (OEPDMM) suitable for impact simulations has been developed through a joint research project funded by the Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA). Development of the model includes derivation of the theoretical details, implementation of the theory into LS-DYNA®,

An orthotropic elasto-plastic damage material model (OEPDMM) suitable for impact simulations has been developed through a joint research project funded by the Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA). Development of the model includes derivation of the theoretical details, implementation of the theory into LS-DYNA®, a commercially available nonlinear transient dynamic finite element code, as material model MAT 213, and verification and validation of the model. The material model is comprised of three major components: deformation, damage, and failure. The deformation sub-model is used to capture both linear and nonlinear deformations through a classical plasticity formulation. The damage sub-model is used to account for the reduction of elastic stiffness of the material as the degree of plastic strain is increased. Finally, the failure sub-model is used to predict the onset of loss of load carrying capacity in the material. OEPDMM is driven completely by tabulated experimental data obtained through physically meaningful material characterization tests, through high fidelity virtual tests, or both. The tabulated data includes stress-strain curves at different temperatures and strain rates to drive the deformation sub-model, damage parameter-total strain curves to drive the damage sub-model, and the failure sub-model can be driven by the data required for different failure theories implemented in the computer code. The work presented herein focuses on the experiments used to obtain the data necessary to drive as well as validate the material model, development and implementation of the damage model, verification of the deformation and damage models through single element (SE) and multi-element (ME) finite element simulations, development and implementation of experimental procedure for modeling delamination, and finally validation of the material model through low speed impact simulations and high speed impact simulations.
ContributorsKhaled, Bilal Marwan (Author) / Rajan, Subramaniam D. (Thesis advisor) / Mobasher, Barzin (Committee member) / Neithalath, Narayanan (Committee member) / Liu, Yongming (Committee member) / Goldberg, Robert K. (Committee member) / Arizona State University (Publisher)
Created2019
154457-Thumbnail Image.png
Description
This study employs a finite element method based modeling of cementitious composite microstructure to study the effect of presence of inclusions on the stress distribution and the constitutive response of the composite. A randomized periodic microstructure combined with periodic boundary conditions forms the base of the finite element models. Inclusion

This study employs a finite element method based modeling of cementitious composite microstructure to study the effect of presence of inclusions on the stress distribution and the constitutive response of the composite. A randomized periodic microstructure combined with periodic boundary conditions forms the base of the finite element models. Inclusion properties of quartz and light weight aggregates of size 600μm obtained from literature were made use of to study the effect of their material (including inclusion stiffness, stiffness of interfacial transition zone and matrix stiffening) and geometric properties (volume fraction of inclusion, particle size distribution of inclusion and thickness of the interfacial transition zone) on the composite. Traction-separation relationship was used to incorporate the effect of debonding at the interface of the matrix and the inclusion to study the effect on stress distribution in the microstructure. The stress distributions observed upon conducting a finite element analysis are caused due to the stiffness mismatch in both the quartz and the light weight aggregates as expected. The constitutive response of the composite microstructure is found to be in good conformance with semi-analytical models as well as experimental values. The effect of debonding throws up certain important observations on the stress distributions in the microstructure based on the stress concentrations and relaxations caused by the stiffness of the individual components of the microstructure. The study presented discusses the different micromechanical models employed, their applicability and suitability to correctly predict the composite constitutive response.
ContributorsMaroli, Amit (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramanium (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2016
154525-Thumbnail Image.png
Description
In order to verify the dispersive nature of transverse displacement in a beam, a deep understanding of the governing partial differential equation is developed. Using the finite element method and Newmark’s method, along with Fourier transforms and other methods, the aim is to obtain consistent results across each numerical technique.

In order to verify the dispersive nature of transverse displacement in a beam, a deep understanding of the governing partial differential equation is developed. Using the finite element method and Newmark’s method, along with Fourier transforms and other methods, the aim is to obtain consistent results across each numerical technique. An analytical solution is also analyzed for the Euler-Bernoulli beam in order to gain confidence in the numerical techniques when used for more advance beam theories that do not have a known analytical solution. Three different beam theories are analyzed in this report: The Euler-Bernoulli beam theory, Rayleigh beam theory and Timoshenko beam theory. A comparison of the results show the difference between each theory and the advantages of using a more advanced beam theory for higher frequency vibrations.
ContributorsTschetter, Ryan William (Author) / Hjelmstad, Keith D. (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2016
155044-Thumbnail Image.png
Description
Composite materials are widely used in various structural applications, including within the automotive and aerospace industries. Unidirectional composite layups have replaced other materials such as metals due to composites’ high strength-to-weight ratio and durability. Finite-element (FE) models are actively being developed to model response of composite systems subjected to a

Composite materials are widely used in various structural applications, including within the automotive and aerospace industries. Unidirectional composite layups have replaced other materials such as metals due to composites’ high strength-to-weight ratio and durability. Finite-element (FE) models are actively being developed to model response of composite systems subjected to a variety of loads including impact loads. These FE models rely on an array of measured material properties as input for accuracy. This work focuses on an orthotropic plasticity constitutive model that has three components – deformation, damage and failure. The model relies on the material properties of the composite such as Young’s modulus, Poisson’s ratio, stress-strain curves in the principal and off-axis material directions, etc. This thesis focuses on two areas important to the development of the FE model – tabbing of the test specimens and data processing of the tests used to generate the required stress-strain curves. A comparative study has been performed on three candidate adhesives using double lap-shear testing to determine their effectiveness in composite specimen tabbing. These tests determined the 3M DP460 epoxy performs best in shear. The Loctite Superglue with 80% the ultimate stress of the 3M DP460 epoxy is acceptable when test specimens have to be ready for testing within a few hours. JB KwikWeld is not suitable for tabbing. In addition, the Experimental Data Processing (EDP) program has been improved for use in post-processing raw data from composites test. EDP has improved to allow for complete processing with the implementation of new weighted least squares smoothing options, curve averaging techniques, and new functionality for data manipulation.
ContributorsSchmidt, Nathan William (Author) / Rajan, Subramaniam D. (Thesis advisor) / Neithalath, Narayanan (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2016