Matching Items (5)

137221-Thumbnail Image.png

Exploring Student Thinking in Novel Linear Relationship Problems

Description

This is a report of a study that investigated the thinking of a high-achieving precalculus student when responding to tasks that required him to define linear formulas to relate covarying

This is a report of a study that investigated the thinking of a high-achieving precalculus student when responding to tasks that required him to define linear formulas to relate covarying quantities. Two interviews were conducted for analysis. A team of us in the mathematics education department at Arizona State University initially identified mental actions that we conjectured were needed for constructing meaningful linear formulas. This guided the development of tasks for the sequence of clinical interviews with one high-performing precalculus student. Analysis of the interview data revealed that in instances when the subject engaged in meaning making that led to him imagining and identifying the relevant quantities and how they change together, he was able to give accurate definitions of variables and was usually able to define a formula to relate the two quantities of interest. However, we found that the student sometimes had difficulty imagining how the two quantities of interest were changing together. At other times he exhibited a weak understanding of the operation of subtraction and the idea of constant rate of change. He did not appear to conceptualize subtraction as a quantitative comparison. His inability to conceptualize a constant rate of change as a proportional relationship between the changes in two quantities also presented an obstacle in his developing a meaningful formula that relied on this understanding. The results further stress the need to develop a student's ability to engage in mental operations that involve covarying quantities and a more robust understanding of constant rate of change since these abilities and understanding are critical for student success in future courses in mathematics.

Contributors

Agent

Created

Date Created
  • 2014-05

156339-Thumbnail Image.png

Implementing differentiated instruction by building on multiple ways all students learn

Description

This action research addressed teacher effectiveness in supporting students’ critical thinking skills by implementing differentiated instructional strategies in eight 3rd- and 4th-grade, self-contained, inclusive classrooms. This study addressed how third-

This action research addressed teacher effectiveness in supporting students’ critical thinking skills by implementing differentiated instructional strategies in eight 3rd- and 4th-grade, self-contained, inclusive classrooms. This study addressed how third- and fourth-grade teachers perceived their instructional effectiveness, how differentiated instructional strategies influence third- and fourth-grade teachers, and how third- and fourth-grade teachers make further use of differentiated instruction to support students’ critical thinking skills across cultures, linguistics, and achievement levels to increase student achievement. Out of the enrollment in a southwest Phoenix elementary school, there was a 35% mobility rate; 76%, free and reduced lunches; 35%, Spanish-speaking homes; 10%, ELL services; and 10%, special education. The school was comprised of 52 certified teachers, out of which there were five related arts teachers, and four teachers who served gifted and special education students. Participants included all eight third- and fourth-grade teachers, 75% female and 25% males; 75% identified as Caucasian and 25% Hispanic/Latina, middle-class citizens. Professional development training was provided to these eight individual teachers during four months on differentiated instructional strategies to support students’ critical thinking. At this study’s beginning, these teachers perceived an obstacle to supporting students’ critical thinking as they struggled to learn new curriculums. Persevering through this challenge, teachers discovered success by implementing design-thinking, developing students’ growth mindsets, and utilizing cultural responsive teaching. These teachers identified three differentiated instructional strategies which impacted students’ academic progress: instructional scaffolds, collaborative group work, and project-based learning. Building upon linguistic responsive teaching, cultural responsive teaching, and Vygotsky’s socio-cultural theory, teachers revealed how to support students’ critical thinking through the use of graphic organizers, sentence frames, explicit instructions, growth mindsets, cultural references, and grouping structures. In addition, the outcomes demonstrated teachers can make further use of differentiated instruction by focusing on instructional groups, teachers’ mindsets, and methods for teaching accelerated learners. This study’s results have implications on teachers’ perception toward using differentiated instructional strategies as a viable method to support the multiple ways all students learn.

Contributors

Agent

Created

Date Created
  • 2018

157668-Thumbnail Image.png

Conceptualizing and Reasoning with Frames of Reference in Three Studies

Description

This dissertation reports three studies about what it means for teachers and students to reason with frames of reference: to conceptualize a reference frame, to coordinate multiple frames of reference,

This dissertation reports three studies about what it means for teachers and students to reason with frames of reference: to conceptualize a reference frame, to coordinate multiple frames of reference, and to combine multiple frames of reference. Each paper expands on the previous one to illustrate and utilize the construct of frame of reference. The first paper is a theory paper that introduces the mental actions involved in reasoning with frames of reference. The concept of frames of reference, though commonly used in mathematics and physics, is not described cognitively in any literature. The paper offers a theoretical model of mental actions involved in conceptualizing a frame of reference. Additionally, it posits mental actions that are necessary for a student to reason with multiple frames of reference. It also extends the theory of quantitative reasoning with the construct of a ‘framed quantity’. The second paper investigates how two introductory calculus students who participated in teaching experiments reasoned about changes (variations). The data was analyzed to see to what extent each student conceptualized the variations within a conceptualized frame of reference as described in the first paper. The study found that the extent to which each student conceptualized, coordinated, and combined reference frames significantly affected his ability to reason productively about variations and to make sense of his own answers. The paper ends by analyzing 123 calculus students’ written responses to one of the tasks to build hypotheses about how calculus students reason about variations within frames of reference. The third paper reports how U.S. and Korean secondary mathematics teachers reason with frame of reference on open-response items. An assessment with five frame of reference tasks was given to 539 teachers in the US and Korea, and the responses were coded with rubrics intended to categorize responses by the extent to which they demonstrated conceptualized and coordinated frames of reference. The results show that the theory in the first study is useful in analyzing teachers’ reasoning with frames of reference, and that the items and rubrics function as useful tools in investigating teachers’ meanings for quantities within a frame of reference.

Contributors

Agent

Created

Date Created
  • 2019

156865-Thumbnail Image.png

Exponential Growth and Online Learning Environments: Designing for and Studying the Development of Student Meanings in Online Courses

Description

This dissertation report follows a three-paper format, with each paper having a different but related focus. In Paper 1 I discuss conceptual analysis of mathematical ideas relative to its place

This dissertation report follows a three-paper format, with each paper having a different but related focus. In Paper 1 I discuss conceptual analysis of mathematical ideas relative to its place within cognitive learning theories and research studies. In particular, I highlight specific ways mathematics education research uses conceptual analysis and discuss the implications of these uses for interpreting and leveraging results to produce empirically tested learning trajectories. From my summary and analysis I develop two recommendations for the cognitive researchers developing empirically supported learning trajectories. (1) A researcher should frame his/her work, and analyze others’ work, within the researcher’s image of a broadly coherent trajectory for student learning and (2) that the field should work towards a common understanding for the meaning of a hypothetical learning trajectory.

In Paper 2 I argue that prior research in online learning has tested the impact of online courses on measures such as student retention rates, satisfaction scores, and GPA but that research is needed to describe the meanings students construct for mathematical ideas researchers have identified as critical to their success in future math courses and other STEM fields. This paper discusses the need for a new focus in studying online mathematics learning and calls for cognitive researchers to begin developing a productive methodology for examining the meanings students construct while engaged in online lessons.

Paper 3 describes the online Precalculus course intervention we designed around measurement imagery and quantitative reasoning as themes that unite topics across units. I report results relative to the meanings students developed for exponential functions and related ideas (such as percent change and growth factors) while working through lessons in the intervention. I provide a conceptual analysis guiding its design and discuss pre-test and pre-interview results, post-test and post-interview results, and observations from student behaviors while interacting with lessons. I demonstrate that the targeted meanings can be productive for students, show common unproductive meanings students possess as they enter Precalculus, highlight challenges and opportunities in teaching and learning in the online environment, and discuss needed adaptations to the intervention and future research opportunities informed by my results.

Contributors

Agent

Created

Date Created
  • 2018

150539-Thumbnail Image.png

Students' ways of thinking about two-variable functions and rate of change in space

Description

This dissertation describes an investigation of four students' ways of thinking about functions of two variables and rate of change of those two-variable functions. Most secondary, introductory algebra, pre-calculus, and

This dissertation describes an investigation of four students' ways of thinking about functions of two variables and rate of change of those two-variable functions. Most secondary, introductory algebra, pre-calculus, and first and second semester calculus courses do not require students to think about functions of more than one variable. Yet vector calculus, calculus on manifolds, linear algebra, and differential equations all rest upon the idea of functions of two (or more) variables. This dissertation contributes to understanding productive ways of thinking that can support students in thinking about functions of two or more variables as they describe complex systems with multiple variables interacting. This dissertation focuses on modeling the way of thinking of four students who participated in a specific instructional sequence designed to explore the limits of their ways of thinking and in turn, develop a robust model that could explain, describe, and predict students' actions relative to specific tasks. The data was collected using a teaching experiment methodology, and the tasks within the teaching experiment leveraged quantitative reasoning and covariation as foundations of students developing a coherent understanding of two-variable functions and their rates of change. The findings of this study indicated that I could characterize students' ways of thinking about two-variable functions by focusing on their use of novice and/or expert shape thinking, and the students' ways of thinking about rate of change by focusing on their quantitative reasoning. The findings suggested that quantitative and covariational reasoning were foundational to a student's ability to generalize their understanding of a single-variable function to two or more variables, and their conception of rate of change to rate of change at a point in space. These results created a need to better understand how experts in the field, such as mathematicians and mathematics educators, thinking about multivariable functions and their rates of change.

Contributors

Agent

Created

Date Created
  • 2012