Matching Items (2)
Filtering by

Clear all filters

189257-Thumbnail Image.png
Description
The ideas of measurement and measurement comparisons (e.g., fractions, ratios, quotients) are introduced to students in elementary school. However, studies report that students of all ages have difficulty comparing two quantities in terms of their relative size. Students often understand fractions such as 3/7 as part-whole relationships or “three out

The ideas of measurement and measurement comparisons (e.g., fractions, ratios, quotients) are introduced to students in elementary school. However, studies report that students of all ages have difficulty comparing two quantities in terms of their relative size. Students often understand fractions such as 3/7 as part-whole relationships or “three out of seven.” These limited conceptions have been documented to have implications for understanding the quotient as a measure of relative size and when learning other foundational ideas in mathematics (e.g., rate of change). Many scholars have identified students’ ability to conceptualize the relative size of two quantities values as important for learning specific ideas such as constant rate of change, exponential growth, and derivative. However, few researchers have focused on students’ ways of thinking about multiplicatively comparing two quantities’ values as they vary together across select topics in precalculus. Relative size reasoning is a way of thinking one has developed when conceptualizing the comparison of two quantities’ values multiplicatively, as their values vary in tandem. This document reviews literature related to relative size reasoning and presents a conceptual analysis that leverages this research in describing what I mean by a relative size comparison and what it means to engage in relative size reasoning. I further illustrate the role of relative size reasoning in understanding rate of change, multiplicative growth, rational functions, and what a graph’s concavity conveys about how two quantities’ values vary together. This study reports on three beginning calculus students’ ways of thinking as they completed tasks designed to elicit students’ relative size reasoning. The data revealed 4 ways of conceptualizing the idea of quotient and highlights the affordances of conceptualizing a quotient as a measure of the relative size of two quantities’ values. The study also reports data from investigating the validity of a collection of multiple-choice items designed to assess students’ relative size reasoning (RSR) abilities. Analysis of this data provided insights for refining the questions and answer choices for these assessment items.
ContributorsLock, Kayla Ashley (Author) / Carlson, Marilyn (Thesis advisor) / Apkarian, Naneh (Thesis advisor) / Strom, April (Committee member) / Byerley, Cameron (Committee member) / Roh, Kyeong-Hah (Committee member) / Arizona State University (Publisher)
Created2023
157668-Thumbnail Image.png
Description
This dissertation reports three studies about what it means for teachers and students to reason with frames of reference: to conceptualize a reference frame, to coordinate multiple frames of reference, and to combine multiple frames of reference. Each paper expands on the previous one to illustrate and utilize the construct

This dissertation reports three studies about what it means for teachers and students to reason with frames of reference: to conceptualize a reference frame, to coordinate multiple frames of reference, and to combine multiple frames of reference. Each paper expands on the previous one to illustrate and utilize the construct of frame of reference. The first paper is a theory paper that introduces the mental actions involved in reasoning with frames of reference. The concept of frames of reference, though commonly used in mathematics and physics, is not described cognitively in any literature. The paper offers a theoretical model of mental actions involved in conceptualizing a frame of reference. Additionally, it posits mental actions that are necessary for a student to reason with multiple frames of reference. It also extends the theory of quantitative reasoning with the construct of a ‘framed quantity’. The second paper investigates how two introductory calculus students who participated in teaching experiments reasoned about changes (variations). The data was analyzed to see to what extent each student conceptualized the variations within a conceptualized frame of reference as described in the first paper. The study found that the extent to which each student conceptualized, coordinated, and combined reference frames significantly affected his ability to reason productively about variations and to make sense of his own answers. The paper ends by analyzing 123 calculus students’ written responses to one of the tasks to build hypotheses about how calculus students reason about variations within frames of reference. The third paper reports how U.S. and Korean secondary mathematics teachers reason with frame of reference on open-response items. An assessment with five frame of reference tasks was given to 539 teachers in the US and Korea, and the responses were coded with rubrics intended to categorize responses by the extent to which they demonstrated conceptualized and coordinated frames of reference. The results show that the theory in the first study is useful in analyzing teachers’ reasoning with frames of reference, and that the items and rubrics function as useful tools in investigating teachers’ meanings for quantities within a frame of reference.
ContributorsJoshua, Surani Ashanthi (Author) / Thompson, Patrick W (Thesis advisor) / Carlson, Marilyn (Committee member) / Roh, Kyeong Hah (Committee member) / Middleton, James (Committee member) / Culbertson, Robert (Committee member) / Arizona State University (Publisher)
Created2019