Matching Items (5)
150254-Thumbnail Image.png
Description
Conceptual change has been a large part of science education research for several decades due to the fact that it allows teachers to think about what students' preconceptions are and how to change these to the correct scientific conceptions. To have students change their preconceptions teachers need to allow students

Conceptual change has been a large part of science education research for several decades due to the fact that it allows teachers to think about what students' preconceptions are and how to change these to the correct scientific conceptions. To have students change their preconceptions teachers need to allow students to confront what they think they know in the presence of the phenomena. Students then collect and analyze evidence pertaining to the phenomena. The goal in the end is for students to reorganize their concepts and change or correct their preconceptions, so that they hold more accurate scientific conceptions. The purpose of this study was to investigate how students' conceptions of the Earth's surface, specifically weathering and erosion, change using the conceptual change framework to guide the instructional decisions. The subjects of the study were a class of 25 seventh grade students. This class received a three-week unit on weathering and erosion that was structured using the conceptual change framework set by Posner, Strike, Hewson, and Gertzog (1982). This framework starts by looking at students' misconceptions, then uses scientific data that students collect to confront their misconceptions. The changes in students' conceptions were measured by a pre concept sketch and post concept sketch. The results of this study showed that the conceptual change framework can modify students' preconceptions of weathering and erosion to correct scientific conceptions. There was statistical significant difference between students' pre concept sketches and post concept sketches scores. After examining the concept sketches, differences were found in how students' concepts had changed from pre to post concept sketch. Further research needs to be done with conceptual change and the geosciences to see if conceptual change is an effective method to use to teach students about the geosciences.
ContributorsTillman, Ashley (Author) / Luft, Julie (Thesis advisor) / Middleton, James (Committee member) / Semken, Steven (Committee member) / Arizona State University (Publisher)
Created2011
156439-Thumbnail Image.png
Description
There have been a number of studies that have examined students’ difficulties in understanding the idea of logarithm and the effectiveness of non-traditional interventions. However, there have been few studies that have examined the understandings students develop and need to develop when completing conceptually oriented logarithmic lessons. In this document,

There have been a number of studies that have examined students’ difficulties in understanding the idea of logarithm and the effectiveness of non-traditional interventions. However, there have been few studies that have examined the understandings students develop and need to develop when completing conceptually oriented logarithmic lessons. In this document, I present the three papers of my dissertation study. The first paper examines two students’ development of concepts foundational to the idea of logarithm. This paper discusses two essential understandings that were revealed to be problematic and essential for students’ development of productive meanings for exponents, logarithms and logarithmic properties. The findings of this study informed my later work to support students in understanding logarithms, their properties and logarithmic functions. The second paper examines two students’ development of the idea of logarithm. This paper describes the reasoning abilities two students exhibited as they engaged with tasks designed to foster their construction of more productive meanings for the idea of logarithm. The findings of this study provide novel insights for supporting students in understanding the idea of logarithm meaningfully. Finally, the third paper begins with an examination of the historical development of the idea of logarithm. I then leveraged the insights of this literature review and the first two papers to perform a conceptual analysis of what is involved in learning and understanding the idea of logarithm. The literature review and conceptual analysis contributes novel and useful information for curriculum developers, instructors, and other researchers studying student learning of this idea.
ContributorsKuper Flores, Emily Ginamarie (Author) / Carlson, Marilyn (Thesis advisor) / Thompson, Patrick (Committee member) / Milner, Fabio (Committee member) / Zazkis, Dov (Committee member) / Czocher, Jennifer (Committee member) / Arizona State University (Publisher)
Created2018
137184-Thumbnail Image.png
Description
The focus of education in the classroom traditionally is one of fact memorization and recall. The teaching process of linear knowledge progression is not always in tune with the way that the human brain actually processes, conceptualizes, and comprehends concepts and information. In an introductory engineering class, focused on materials

The focus of education in the classroom traditionally is one of fact memorization and recall. The teaching process of linear knowledge progression is not always in tune with the way that the human brain actually processes, conceptualizes, and comprehends concepts and information. In an introductory engineering class, focused on materials engineering and its related concepts, a system of lecture interventions has been put in place to increase concept comprehension by supplementing lecture units with various activities, from additional worksheets, explicit concept discussions, and most recently, YouTube videos showcasing specific concepts and situations. In an attempt to correct the lack of actual concept comprehension, these interventions seek to interact with the human mind in a way that capitalizes on its ability to process and interpret non-linear knowledge and information.

Using a concept test given prior to the lecture unit, and after, the difference in scores is used to recognize if the concepts presented have actually been comprehended. Used specifically in a lecture unit on solubility and solutions, the concept test tested student’s knowledge of supersaturated, saturated, and unsaturated solutions. With a visual identification and a written explanation, the student’s ability to identify and explain the three solutions was tested.

In order to determine the cause of the change in score from pre- to post-test, an analysis of the change in scores and the effects of question type and solution type was conducted. The significant results are as follows:
 The change in score from pre- to post-test was found to be significant, with the only difference between the two tests being the lecture unit and intervention
 From pre- to post-test, solution type had a significant effect on the score, with the unsaturated solution being the most easily recognized and explained solution type
 Students that felt that the YouTube videos greatly increased their concept comprehension, on average, performed better than their counterparts and also saw a greater increase their score from pre- to post-test
ContributorsLinich, Christopher Graham (Author) / Krause, Stephen (Thesis director) / Middleton, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
171505-Thumbnail Image.png
Description
The impact of Artificial Intelligence (AI) has increased significantly in daily life. AI is taking big strides towards moving into areas of life that are critical such as healthcare but, also into areas such as entertainment and leisure. Deep neural networks have been pivotal in making all these advancements possible.

The impact of Artificial Intelligence (AI) has increased significantly in daily life. AI is taking big strides towards moving into areas of life that are critical such as healthcare but, also into areas such as entertainment and leisure. Deep neural networks have been pivotal in making all these advancements possible. But, a well-known problem with deep neural networks is the lack of explanations for the choices it makes. To combat this, several methods have been tried in the field of research. One example of this is assigning rankings to the individual features and how influential they are in the decision-making process. In contrast a newer class of methods focuses on Concept Activation Vectors (CAV) which focus on extracting higher-level concepts from the trained model to capture more information as a mixture of several features and not just one. The goal of this thesis is to employ concepts in a novel domain: to explain how a deep learning model uses computer vision to classify music into different genres. Due to the advances in the field of computer vision with deep learning for classification tasks, it is rather a standard practice now to convert an audio clip into corresponding spectrograms and use those spectrograms as image inputs to the deep learning model. Thus, a pre-trained model can classify the spectrogram images (representing songs) into musical genres. The proposed explanation system called “Why Pop?” tries to answer certain questions about the classification process such as what parts of the spectrogram influence the model the most, what concepts were extracted and how are they different for different classes. These explanations aid the user gain insights into the model’s learnings, biases, and the decision-making process.
ContributorsSharma, Shubham (Author) / Bryan, Chris (Thesis advisor) / McDaniel, Troy (Committee member) / Sarwat, Mohamed (Committee member) / Arizona State University (Publisher)
Created2022
Description
Scientific researchers have studied microorganisms since the emergence of the single lens microscope in the 17th century. Since then, researchers designed and published many thousands of images to record and share their observations, including hand-drawn diagrams, photomicrographs, and photographs. Images shaped how researchers conceived of microorganisms, their concepts of microorganisms

Scientific researchers have studied microorganisms since the emergence of the single lens microscope in the 17th century. Since then, researchers designed and published many thousands of images to record and share their observations, including hand-drawn diagrams, photomicrographs, and photographs. Images shaped how researchers conceived of microorganisms, their concepts of microorganisms shaped their images, and their images and concepts were shaped by the contexts in which they were working. Over time, the interplay of images and concepts in various research contexts participated in the development of new concepts related to microorganisms, like the “biofilm” concept, or the idea that bacteria exist in nature as complex aggregates attached to surfaces via extracellular polymeric matrices. Many histories of microbiology locate the origin of the biofilm concept in the 1970s, but that date obscures the rich history of research about attached microbial aggregates that occurred throughout the history of microbiology. I discovered how the interplay of images and concepts related to bacteria participated in the development of the biofilm concept by documenting when and why researchers used different visual features to represent changing concepts related to microorganisms. I specifically examined how and why scientists represented evolving concepts related to bacteria during the 17th century (Chapter 1), from the late 17th century to the early 20th century (Chapter 2), and during the first seventy-four years of the 20th century (Chapter 3). I discovered the biofilm concept developed in at least three unique research contexts during the 20th century, and how images reflected and shaped the concept’s development in each case. The narrative and collection of images generated from this work serve as a visual history of the development of scientists’ ideas about the nature of bacteria over 300 years.
ContributorsGuerrero, Anna Clemencia (Author) / Maienschein, Jane (Thesis advisor) / Laubichler, Manfred (Committee member) / Sterner, Beckett (Committee member) / Matlin, Karl (Committee member) / Arizona State University (Publisher)
Created2023