Matching Items (3)

Filtering by

Clear all filters

137100-Thumbnail Image.png

Maximum Entropy Surrogation in Multiple Channel Signal Detection

Description

Multiple-channel detection is considered in the context of a sensor network where data can be exchanged directly between sensor nodes that share a common edge in the network graph. Optimal statistical tests used for signal source detection with multiple noisy

Multiple-channel detection is considered in the context of a sensor network where data can be exchanged directly between sensor nodes that share a common edge in the network graph. Optimal statistical tests used for signal source detection with multiple noisy sensors, such as the Generalized Coherence (GC) estimate, use pairwise measurements from every pair of sensors in the network and are thus only applicable when the network graph is completely connected, or when data are accumulated at a common fusion center. This thesis presents and exploits a new method that uses maximum-entropy techniques to estimate measurements between pairs of sensors that are not in direct communication, thereby enabling the use of the GC estimate in incompletely connected sensor networks. The research in this thesis culminates in a main conjecture supported by statistical tests regarding the topology of the incomplete network graphs.

Contributors

Agent

Created

Date Created
2014-05

147972-Thumbnail Image.png

Audio Waveform Sample SVD Compression and Impact on Performance

Description

Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless

Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless compression may seem like the best option, lossy compression, which is used in most audio and video, reduces transmission time and results in much smaller file sizes. However, this compression can affect quality if it goes too far. The more compression there is on a waveform, the more degradation there is, and once a file is lossy compressed, this process is not reversible. This project will observe the degradation of an audio signal after the application of Singular Value Decomposition compression, a lossy compression that eliminates singular values from a signal’s matrix.

Contributors

Agent

Created

Date Created
2021-05

154240-Thumbnail Image.png

A new communication scheme implying amplitude limited inputs and signal dependent noise: system design, information theoretic analysis and channel

Description

I propose a new communications scheme where signature signals are used to carry digital data by suitably modulating the signal parameters with information bits. One possible application for the proposed scheme is in underwater acoustic (UWA) communications; with this motivation,

I propose a new communications scheme where signature signals are used to carry digital data by suitably modulating the signal parameters with information bits. One possible application for the proposed scheme is in underwater acoustic (UWA) communications; with this motivation, I demonstrate how it can be applied in UWA communications. In order to do that, I exploit existing parameterized models for mammalian sounds by using them as signature signals. Digital data is transmitted by mapping vectors of information bits to a carefully designed set of parameters with values obtained from the biomimetic signal models. To complete the overall system design, I develop appropriate receivers taking into account the specific UWA channel models. I present some numerical results from the analysis of data recorded during the Kauai Acomms MURI 2011 (KAM11) UWA communications experiment.

It is shown that the proposed communication scheme results in approximate channel models with amplitude-limited inputs and signal-dependent additive noise. Motivated by this observation, I study capacity of amplitude-limited channels under different transmission scenarios. Specifically, I consider fading channels, signal-dependent additive Gaussian noise channels, multiple-input multiple-output (MIMO) systems and parallel Gaussian channels under peak power constraints.

I also consider practical channel coding problems for channels with signal-dependent noise. I consider two specific models; signal-dependent additive Gaussian noise channels and Z-channels which serve as binary-input binary-output approximations to the Gaussian case. I propose a new upper bound on the probability of error, and utilize it for design of codes. I illustrate the tightness of the derived bounds and the performance of the designed codes via examples.

Contributors

Agent

Created

Date Created
2015